
CERN CONTROLS CONFIGURATION SERVICE –  
A CHALLENGE IN USABILITY 

L. Burdzanowski†, A. Asko, A. Lameiro Fernandes, K. Penar, C. Roderick,  
B. Urbaniec, V. Ioulios Vasiloudis, CERN, Geneva, Switzerland 

Abstract 
Complex control systems often require complex tools 

to facilitate daily operations in a way that assures the 
highest possible availability. Such a situation poses an 
engineering challenge, for which system complexity 
needs to be tamed in a way that everyday use becomes 
intuitive and efficient. 

The sensation of comfort and ease of use are matters of 
ergonomics and usability - very relevant not only to 
everyday equipment but especially software applications, 
products and graphical user interfaces.  

The Controls Configuration Service (CCS) is a key 
component in CERN’s data driven accelerator Control 
System. Based around a central database, the service 
provides a range of user interfaces enabling configuration 
of all different aspects of controls for CERN’s accelerator 
complex.  

This paper describes the on-going renovation of the 
service with a focus on the evolution of the provided user 
interfaces, design choices and architectural decisions 
paving the way towards a single configuration platform 
for CERN’s control systems in the near future.  

INTRODUCTION 
For a long time, the subject of ergonomics and usability 

in the software domain was mainly attributed to consumer 
products. Business products and industry-oriented 
software in particular received less attention to such 
aspects, often being considered as secondary or optional 
with respect to the core functional needs. This situation is 
gradually changing due to gaining a better understanding 
of the importance of usability as well as advancements in 
modern software technologies aimed at easy and efficient 
development of user-friendly interfaces. In general, 
Control Systems used in particle accelerators and large 
experiments can be perceived as industrial installations 
where stability, efficiency and reliability are primary 
concerns (including user-interfaces and software 
applications). However, in the case of scientific 
experiments and installations there is no hiding the fact 
that the primary mission is not monetary profit but rather 
the pursuit of greater ideas and fundamental 
understanding. This mission is often conducted by 
personnel for whom the task to control complex 
installations via software application is performed in 
addition to their principle scientific or engineering 
background. This aspect should be seen as a motivator for 
Control System designers and engineers to provide not 
only reliable and efficient solutions, but also ergonomic 
and usable software applications to facilitate their usage 
as the primary tools for daily work. 

 
The CERN accelerator Control System has evolved 

together with the accelerator complex. Certain software 
applications and user interfaces have roots going back to 
the early 1990's. This situation naturally poses a challenge 
with respect to maintenance and further evolution of the 
software. The first basic graphical user interfaces 
provided by the Controls Configuration Service (CCS) 
were developed in the mid–1990's and have evolved ever 
since [1]. The specificity of the CCS service in the CERN 
accelerator Control System is its centralised role making 
it a hub of configuration data among all Control System 
layers. Having this role, together with a broad scope 
spanning many domains, with a large number of users 
(~500) – creates a major challenge in providing and 
maintaining usable, user-friendly interfaces without 
imposing unnecessary constraints on the user community.  

The challenges to design and provide ergonomic and 
user-friendly Controls applications, practical strategies 
and design concepts and an overall discussion of usability 
aspects with respect to centralised core Control systems 
services like the CCS are discussed further in this paper. 
The practical experience gained during development of 
the new generation of CCS tools serves to reflect on how 
Controls applications can be designed and developed such 
that long-term maintenance and user satisfaction are not 
conflicting goals. In addition, technical highlights about 
deliberately selected software technologies bring insights 
on how graphical user interfaces can be rapidly developed 
without sacrificing responsiveness or ergonomics. 

USABILITY 
Generally speaking, the term usability expresses facility 

of use or ease of learning for a given man-made object; let 
it be a tool or a device [2]. In a world of software 
engineering the term usability represents the degree to 
which a piece of software can be used by its end-users in 
a satisfactory, effective and efficient manner. A given 
user-interface can be considered intuitive when it does not 
require intense training and exhibits a natural workflow 
for which it was designed. The subject of usability is 
widely acknowledged in the software industry world and 
is formalised by dedicated ISO standards: ISO/TR 
16982:2002 and ISO 9241-210:2010. 

Software applications, specifically graphical user 
interfaces (GUI) are by no means mere tools facilitating 
daily work. Their sole purpose is to establish an interface 
between human users and “machines”, specifically the 
internal implementation of a system. This point is 
especially important – one of the common failures of 
some GUIs is an inherent lack of abstraction between 
system internals, (e.g. a database structure) and its  ___________________________________________  

† Lukasz.Burdzanowski@cern.ch 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL01

User Interfaces and User eXperience (UX)
TUBPL01

159

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



representation to the end-user. While occasionally such a 
case may be justified, in general end-users don’t want to 
be exposed to plain structures of tables, rows, columns 
nor any other implementation details. Rather what is 
expected is that a software application and its GUI(s) 
expose real practical use-cases and every-day workflows 
[3]. As an example, following figure presents a screenshot 
of Controls Configuration Data Editor (CCDE) – an 
application discussed in more details through this paper 
(see Fig. 1).  

 

 
Figure 1: CCDE view of control front-end software 
devices. 

What we can identify here is a clear separation between 
root context in which user is working: Front-End 
Computer in this case, with its details like responsible, 
role, type and below it more specific information, 
accessible when necessary but not immediately shown. 

 

 
Figure 2: Focus on a root context – a front-end computer. 

The root context (see Fig. 2) stays fixed while the user 
can easily change between different details: physical 
configuration of a FECs (hardware equipment), logical 
(startup processes), hosted devices and even history of 
changes and comments of control system experts. Context 
of hosted devices is especially important since it presents 
not only devices themselves but their state and relation to 
other components of the CERN Control System, 
specifically to high-level control system services (see 
Fig.3).  

 

 
Figure 3: Clear separation of information dependant on a 
root context – a summary of software devices hosted. 

Clear and well-defined structure of the screen 
maintained across the application, easy access to detailed 
information without loss of the core context, built-in 
integration with various component as well as intuitive 
colours and symbols – all these aspects contribute to 
increased usability.  

An application is a tool that is expected to facilitate 
work while not generating unnecessary or artificial steps 
to accomplish common tasks. Therefore, the real 
challenge to achieve usable and ergonomic applications is 
to concisely capture user expectations, real-life needs and 
provide a means to facilitate daily work. This is especially 
challenging in the case of engineering-oriented systems, 
for which the primary concerns are efficiency, robustness 
and minimalism – leaving look-and-feel as a secondary 
need. This is precisely the challenge faced by the CCS. 

Aspects of User-Interface Usability 
Visual consistency is one of the most evident aspects of 

a highly usable system. By streamlining the look and feel 
of typical graphical components: data grids, panels, 
buttons, location of elements and general application 
layout we can greatly lower the learning curve for users, 
and more importantly reduce effort needed to understand 
and follow application behaviour. Unified typography, 
symbolism and use of icons or other pictographs, colour 
palette – are all equally important and can be perceived as 
primary utilities in establishing a consistent visual 
experience. In the example below (see Fig. 4) – colours 
and icons used in on-screen notifications are streamlined 
within the application. Separation between an affirmative 
message, a warning or a system error is evident and 
adequately captures user attention. 

 

 
Figure 4: An example of application notifications. 

Lack of visual consistency is one of the main factors 
contributing to user dissatisfaction and strain in their daily 
work. Moreover, visual inconsistencies or ambiguous 
behaviours are often not identified directly but stand out 
more as a general negative “feeling” or perception for the 
end-users. 

One particular aspect of visual consistency is the notion 
of concise behaviour of the application interface. Next to 
the streamlined presentation of UI components underlying 
actions need to follow unified rules and schemes. The 
flow of actions should be logical and aligned with natural 
work scenarios while still being able to hide underlying 
technical implementation aspects from end-users. Actions 
in the system should be limited in steps and closely 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL01

TUBPL01
160

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)



connected to the context in which a user is operating. As 
an example, options of single edition of a system entity 
should be aligned with related bulk operations. In both 
cases users should be prompted with similar dialogues or 
warnings. The notion of warnings is especially crucial as 
a highly usable application should not allow critical 
errors, for example by letting users inadvertently change 
critical system data without realising.  
 

 
Figure 5: CCDE Confirmation dialogues prompting user. 

Fig. 5 shows an example of how visual consistency and 
concise behaviour helps. Confirmative and regular action 
is represented across the application always with the same 
colour and icon. Potentially dangerous action of deletion 
is explicitly marked in red. This scheme is kept across the 
application and actions of high importance are highlighted 
attracting user attention and when justified provoking 
additional steps (e.g. confirmation). In addition, the 
dialogues provide auxiliary details and let re-consider an 
action. 

The granularity of a user interface together with the 
expertise level necessary to operate it effectively are 
further usability factors. Too coarse-grained interfaces 
(e.g. panels with numerous inputs of varying data types 
and importance), tend to provoke mistakes and contribute 
to mental tiredness. Too fine-grained interfaces or actions 
on the other hand provoke annoyance and stress, 
especially for expert users. Logical separation of system 
tasks should be clearly reflected in the user interface but 
not in a way where abstraction of the interface is lost. 
Technical details of the underlying services and 
programmable applications interfaces (API) should not 
steer design of the presentation layer in the system. This 
aspect is essential when evolving and re-factoring existing 
applications due to functional or technical reasons. Such 
scenarios are opportunities to revise and scrutinise general 
design and application flow based on real-life experiences 
from the users. 

CHALLENGES OF USABILTY 
Control systems naturally evolve alongside the 

progressing development of accelerators and software 
technology. We can observe a trend in which user-
oriented applications become high-level tools, 
increasingly visual and build around workflows helping to 
guide the users. 

Users are progressively being given a role of an 
observer and supervisor of the system while low-level 
actions are automatized and abstracted. This abstraction 
brings software engineering products closer to the domain 
of Control Systems tailored to specific cases like 
accelerators physics. The domain is not static but its rapid 
development does not always imply a need for having an 

equally dynamic evolution of high-level controls system 
applications. Foremost, the applications need to enable 
less downtime and more throughput in terms of the 
amount of work possible to do in a finite amount of time. 
Highly usable applications are a prerogative in this area.  

The diversified and complex nature of Control Systems 
is one of the challenges to overcome. The natural 
complexity of CERN’s accelerator domain often prevents 
off-the-shelf products to be easily integrated or 
customized to meet user expectations. Complex systems 
require a thorough understanding of the underlying 
domain in order to properly capture needs and provide 
software solutions to help in daily tasks. 
 

 
Figure 6: Example of poorly structured applications 
exposing users to system complexity. 

Above figure shows a welcome screen of formerly 
provided CCS tools. Immediately we can notice that as 
users we are exposed to a myriad of various applications 
which indicates how complex and diversified is the 
underlying system (see Fig. 6). Variety and diversification 
are places where application providers and designers can 
gain most when helping users. Properly structured 
interfaces with well-integrated authorization schemes can 
guide users through the system and actually help in hiding 
the complexity. 

Development of Control Systems and applications is 
practically tied to the operational schedule of accelerators 
and experiments. Any major changes need to follow the 
schedule thus imposing an evolutionary development 
approach. As the evolution may be prolonged in terms of 
time, technical skills and expertise necessary to 
progressively advance, the applications may become 
incompatible with market needs and skills available on 
the market. Control Systems have life-spans stretching 
from a few years up to 15-25 years of evolution, i.e.: 
when looking at lead-time between the first design 
concepts of an accelerator and its full operational capacity 
or accomplishment of a planned physics run. Such 
systems are never fully finished nor completed following 
natural development and advancement of technology and 
science. With the high inertia of Control Systems, 
software development and use of technical solutions and 
cutting-edge market products should be considered with 
caution since the life-span of software frameworks and 
specific technologies is noticeably shorter than Control 
Systems themselves. This situation makes it necessary to 
evaluate a trade-off between the choices of technologies 
that are relevant to the skills on the market while not 
posing a risk of early obsolescence. 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL01

User Interfaces and User eXperience (UX)
TUBPL01

161

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Technological advancement within the software 
industry can indirectly pose a challenge although not 
directly related to applications usability but rather 
development of software interfaces in general. Alongside 
rapid expansion of the Internet, the Web browsers, 
development frameworks and libraries targeted at Web 
applications keep expanding and maturing – providing 
more facilities to easily develop interfaces which are 
responsive and provide a rich user experience thanks to 
advanced UI controls. While not directly related to the 
usability but rather software engineering in general, 
providers and maintainers of Control System applications 
need to carefully evaluate the lifespan of a given software 
package versus its expected utilization even before 
starting development. Control System interfaces should 
not lag behind commonly established UX standards to 
which users get accustomed to on a daily basis, e.g. 
consumer products such as e-banking and travel booking 
applications. Software libraries providing / facilitating use 
of modern UX trends have to be selected with care as the 
lifecycle of Control Systems are usually far longer than 
those of many potentially interesting software choices. 
Trends and standards may change or evolve faster than 
the software applications trying to embrace them in order 
to improve the user experience. This is one more 
challenge in providing highly usable applications, where a 
balance between maintainability of software and a 
dissonance between work-specific and daily life products 
is not unnecessarily enlarged.  

DESIGN STRATEGIES 
Wire-framing or mock-ups are one of the most efficient 

tools to help increase usability. Already at the early stages 
of analysis and preparation, potential problems can be 
identified or compliance of a given user interface with 
globally established rules can be validated. Mock-ups are 
an indispensable utility in discussions with target end-
users. Considering their relatively low development cost, 
mock-ups should be seen as a standard step in the process 
of designing applications where usability is at stake. 

 

 
Figure 7: Mock-up of a CCDE view. Please note how user 
context is focused on data edition by using a modal 
window with an overlay. Once again buttons, colours and 
icons remain consistent. 

Mock-ups help to deliver applications matching the 
needs but are not sufficient to assure that shipped 
products are fully covering the needs (see Fig. 7). The 
main product life-cycle phases: design, development and 
maintenance should take into account that lack of 
usability in some areas is fully justified knowing that the 
given part will evolve based on changing requirements or 
emerging needs. It is often more effective to ship early 
and deal with consequences later provided that an 
application does not lack in major usability and functional 
aspects. This case is crucial for new products addressed at 
large communities. 

Managing expert-level access or the multitude of roles 
that advanced users need to have in the case of Control 
Systems poses a particular challenge. Such users normally 
need access to a wide range of operations and functions of 
the system based on the situation in a given moment. 
Taking this into account, the provided applications need 
to support both task and role oriented models. Such 
applications and corresponding system design ensure that 
the usability, functionality and maintainability of the 
applications (and the system itself) remain at a 
satisfactory level for all kinds of users, and also stay 
stable across different contexts of work. This concept can 
practically be realized via well-integrated application 
authorization schemes that naturally aim to limit access or 
functionality based on roles. Moreover, this can be based 
on not only simple editor/expert roles but also on system 
specific profiles i.e.: middleware expert, front-end 
software editor, hardware expert, etc. (see Fig. 8). 

 

 
Figure 8: Admin panel of CCDE showing application 
profiles of the selected user and profiles management. 

Having profiles of roles can help application software 
developers to better structure the application, whilst 
Control System experts and designers can properly 
capture real roles and function of the users at runtime. 
This approach can noticeably lower the mismatch 
between the application design and practical needs. 
Expert users having a multitude of roles (falling into 
multiple profiles) can benefit from built-in user-interface 
perspectives that let the user change current “profile” 
depending on their current needs. This usability concept is 
well established – for example in CAD/CAM tools or 
software development IDEs – enabling developers and 
designers to change context and the focus of the 
application based on interim needs. 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL01

TUBPL01
162

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)



CERN CONTROLS CONFIGURATION 
SERVICE  

The CERN Control System is a data-driven multi-layer 
infrastructure [4] including: 
 Low-level hardware and software – e.g. timing 

infrastructure, equipment drivers, Front-End 
Computers (FEC), end-user developed C/C++ 
binaries representing operational “devices”, etc. 

 Middleware layer – e.g. read/write access to 
processes running on FECs and Role Based Access 
Control (RBAC). 

 High-level software – e.g. high-level settings 
management, data acquisition and archiving. 

The Controls Configuration Service (CCS) helps bind 
all of the layers together by providing them with complete 
and coherent configurations that are necessary for the 
proper functioning of the Control system.  

The current architecture of the CCS is based on:  
 An Oracle database (2-node RAC cluster) 
 A set of high-level client Java APIs 
 Database level client APIs (PL/SQL interfaces) 
 Controls Configuration Data Editor – a new 

generation unified high-level graphical user interface 
facilitating data management. 

 Numerous legacy GUIs based on proprietary 
technology (Oracle Application Express – APEX), 
which are being phased out. 
 

The CCS exists since 35 years, during which time the 
scope, architecture, technology and development 
methodology have kept evolving. In mid-2014 the first 
major service-wide renovation and overhaul started – 
marking the beginning of a new chapter in the CCS’s long 
history [5]. One of the main goals of this on-going 
consolidation is a complete overhaul of all related GUIs, 
including read-only data browsing tools and APEX based 
data edition tools. Historically, the CCS and underlying 
components of the Control System have been represented 
as a set of separate applications and components which 
did not capture typical workflows, frequently exposing 
internal details like database table structures, having 
confusing GUI controls and presenting inadequate error 
messages. In order to address these flaws and to improve 
usability and ergonomics, a new tool – the Controls 
Configuration Data Editor (CCDE) has been designed 
from scratch with the goal of providing a single and user-
oriented view of all Control System configuration data.  

Challenges and Solutions 
One of the key challenges of the CCS is its diversified 

and vast groups of users, functions and a multitude of 
domains and sub-system-specific extensions. Although 
such a situation brings a considerable level of complexity 
the benefits are clear and counter potential problems: by 
having a single and unified source of the configuration in 
the Control system we are able to assure its consistency, 
correctness and remove unnecessary and potentially 
dangerous redundancies. Thanks to the unification, the 

users of the CCS can access and rely on the same 
configuration data independently of their role: hardware 
installation experts, equipment experts, FESA [6] 
developers or middleware specialists. Furthermore, high-
level components of the Control System can reliably 
depend on the consistent and correct configuration, i.e. 
InCA/LSA [7] (accelerator settings management) or 
CALS [8] (CERN Accelerator Logging Service).  

The technical implementation of the Control System 
where well-defined distinct services and components 
work together should not be exposed to users – especially 
with respect to GUIs. As a specific example with unified 
access to configuration data through a single application 
(the CCDE), users of systems like CALS are able to 
configure data logging directly when browsing control 
devices, their properties and fields. 

 

 
Figure 9: Focus on devices state and role in the system. 

The CCS captures not only the definition of a device 
class and its properties but also how a device is used in a 
given context, for example as a source of data fed to the 
Logging system or presence in LSA (see Fig. 9). This is 
especially valuable when we reflect on the fact that 
experts responsible for physical equipment (producers of 
data, e.g. beam instrumentation equipment like wire 
scanners) are often not the same people interested in 
specific data during periods of accelerator operation or 
machine development studies. This is a simple example of 
increasing usability and system ergonomics for end-users, 
while at the same time hiding implementation details like 
integration between separate Controls sub-systems.  

A more advanced example is the configuration of 
Front-End Computers (FEC). Today, in order to prepare a 
FEC for operational use, several distinct actions are 
required: put simply – Hardware (HW) experts need to 
import or declare the networked device in the CCS, 
configure its physical components like crates and modules 
 

 
Figure 10: Front-End Computer physical configuration. 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL01

User Interfaces and User eXperience (UX)
TUBPL01

163

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Above figure (Fig. 10) shows physical configuration 
with focus on hardware modules locations (slots and sub-
slots) as well as summarising configuration of each 
module by indicating presence of module signals, 
interrupts, exceptions. Users are not forced to traverse 
each of the modules to find one which has signals 
registered – instead all the information is presented at 
glance. 

Next, low-level software experts may then need to 
setup drivers for HW modules. Finally, equipment experts 
or FESA developers need to configure FEC start-up 
sequences in order to launch their FESA processes on the 
FEC. This task-specific context is presented on following 
figure (see Fig. 11). 

 

 
Figure 11: FEC logical configuration - summary of run-
time processes configured for deployment. 

In the past, all of the above operations required users to 
switch back-and-forth between different views, tabs and 
screens of the provided tools, often in a very unintuitive 
manner. After closer analysis and discussions with the 
different users taking part in this scenario, two distinct 
roles were identified in the system: HW installation expert 
(performing physical configuration) and FEC start-up 
configurator (responsible for the logical configuration).  
These roles frequently correspond to different users 
working in close collaboration. 

The CCDE aims to cater for the two aforementioned 
roles in the way the GUI is designed and works in the 
context of a currently selected FEC. The feedback 
gathered proved to be indispensable in this regard and 
showed clearly that from the perspective of hardware 
installation which normally involves the setup of a crate 
(VME, KISS-2U-CRATE, etc.) and its modules (i.e.: a set 
of CTRVs), the ergonomics of the GUI can be noticeably 
increased by showing all the relevant information in a 
single well-structured view despite the large amount of 
attributes involved. Attention to the logical order of how 
the information is presented on the screen further 
increases ergonomics – removing the need for users to 
switch context and traverse between various tabs and 
panels. By considering the same FEC and switching the 
context to the logical configuration users are able to 
“switch” the perspective on configuration data intuitively 
and seamlessly. 

Technically, the CCDE is implemented as a single-page 
Web application built on top of modern de-facto standard 
software industry solutions like Java and Spring (back-

end) and AngularJS with TypeScript (HTML5 front-end). 
Thanks to a stateless architecture, the application is 
deployed in a high-availability manner, whereby 
redundant server nodes assure non-interruptive operations 
for our users despite frequent releases of the new features 
and improvements. With releases scheduled on a weekly 
basis, the delay between users submitting feedback and 
practical implementation is kept to the minimum – 
increasing users satisfaction and lowering the likelihood 
of introducing errors in production. 

CONCLUSIONS 
The question was raised whether usability and 

ergonomics of GUIs used in Control Systems is a 
prerogative or should rather be seen as a secondary 
concern with respect to core application functions. In 
practical terms the aspect of application usability is 
equally important as stability or robustness. End-users 
need reliable and efficient tools that are also easy to learn 
and use. The CCS examples described show how the 
challenge of design and development of highly usable 
applications can be overcome without ignoring core 
functional aspects of the application.  

Above all, Control system applications should capture 
the natural workflow of the target users in order to help in 
their daily work. The challenge to provide easy to use 
interfaces or tools is not only limited to complex domains 
– in most cases, the challenge is to better understand 
requirements and real-life scenarios in which future users 
are going to work. It is a failure of a software engineer 
when a tool or an application does not fit its purpose. The 
specificity of CERN’s large and complex domain of 
accelerators and experiments makes it difficult to guess 
and envision how all CCS users would like to work. 
Fortunately, software products are generally easier to 
change and improve than physical entities. It may be hard 
or impossible to modify already installed equipment but 
software products give more flexibility in this area. An 
open-minded software engineer will listen and understand 
a user’s needs. After all, the purpose of software tools is 
to help, but only users can help software engineers to 
understand their real needs. 

REFERENCES 
[1] J. Cuperus, et al., "Integration of a Relational Database in 

the CERN PS Control System", ICALEPCS'97, Beijing, 
China, 1997, ID085 

[2] D. Norman, The Design of Everyday Things – ISBN-13: 
978-0-465-06710-7 

[3] S. Krug, Don't Make Me Think - ISBN-13: 978-0321344755 
[4] R. Gorbonosov, The Control Systems of the Large Hadron 

Collider, CERN Academic Training Lecture Regular 
Program, http://cds.cern.ch/record/1605201 

[5] L. Burdzanowski, "The Renovation of the CERN Controls 
Configuration Service", ICALEPCS'15, Melbourne, 
Australia, 2015, MOPGF006 

[6] M. Arruat et al., "Front-End Software Architecture", 
ICALEPCS'07, Knoxville, Tennessee, USA, 2007, 
WOPA04 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL01

TUBPL01
164

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)



[7] G. Kruk et al., "How to Successfully Renovate a Controls 
System? - Lessons Learned from the Renovation of the 
CERN Injectors' Controls Software", ICALEPCS'13, San 
Francisco, CA, USA, 2013, MOCOBAB05 

[8] C. Roderick et al., "The CERN Accelerator Logging Service 
- 10 Years in Operation: A Look at the Past, Present, and 
Future", ICALEPCS'13, San Francisco, CA, USA, 2013, 
TUPPC028 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL01

User Interfaces and User eXperience (UX)
TUBPL01

165

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


