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Abstract

The Cryomodule-On-Chip (CMOC) simulation engine is

a Verilog implementation of a cryomodule model used for

Low-Level RF development (LLRF) for superconducting

cavities. The model includes a state-space model of the ac-

celerating fields inside a cavity, the mechanical resonances

inside a cryomodule as well as their interactions. The imple-

mentation of the model along with the LLRF controller in

the same FPGA allows for live simulations of an RF system.

This allows for an interactive simulation framework, where

emulated cavity signals are produced at the same rate as in

a real system and therefore providing the opportunity to ob-

serve longer time-scale effects than in software simulations

as well as a platform for software development and operator

training.

INTRODUCTION

The CMOC simulation engine has been used throughout

the design process of a SRF cavity controller, first for the

Next Generation Light Source (NGLS) proposal at LBNL [1]

and then for the Linear Coherent Light Source Linac (LCLS-

II) [2]. LCLS-II is an X-ray Free Electron Laser (FEL)

under construction at SLAC, driven by a superconducting

RF Linac [2]. The electron beam quality will directly trans-

late to the quality of the X-ray beams produced in undulators

and used for scientific research in the end stations; hence

strict requirements have been placed on the stability of the

accelerating cavity fields. An initial stability goal of 0.01◦ in

phase and 0.01% amplitude has been set for the main Linac,

composed of 280 nine-cell 1300 MHz superconducting cav-

ities [3].

The difficulty resides in providing the ability to reject

disturbances from the cryomodule, which is incompletely

known as it depends on the cryomodule structure itself (cur-

rently under development at JLab and Fermilab) and the

harsh accelerator environment. Previous experience in the

field and an extrapolation to the cavity design parameters

(relatively high QL ≈ 4 × 107, implying a half-bandwidth of

around 16 Hz) suggest the use of strong RF feedback to re-

ject the projected noise disturbances, which in turn demands

careful engineering of the entire system.

MOTIVATION

LBNL has developed tools to first perform analytical sta-

bility analysis using basic control theory, software [4] for

the numerical analysis and CMOC. CMOC takes the design

of a SRF cavity controller one step closer to the final result,

which is its implementation in an FPGA. It runs the actual

∗ This material is based upon work supported by the U.S. Department of

Energy, Office of Science, under Contract No. DE-AC02-76SF00515.
† CSerrano@lbl.gov

cavity controller in a live FPGA and provides the capability

of exercising the functionality of the controller as it interacts

with a SRF cavity model, also implemented in the FPGA.
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Figure 1: System hardware configuration supporting half of

a cryomodule (one of two RF Station chassis shown).

Waveform display and user interaction with CMOC de-

mands for communication logic with software, which is

included in CMOC to extract cavity waveforms and to set

configuration parameters for both the cavity controller and

the models. This communication link is the same used in

operations and can be used to build the software infrastruc-

ture for the LLRF installation. The physically meaningful

live waveforms being generated by CMOC and its ability to

provide the user with the same level of interactivity as when

operating a real cavity make it useful for several purposes:

initial tests of the cavity controller for FPGA designers, a

complete environment to exercise the communications be-

tween the FPGA and a control system (both on the FPGA and

control system ends) and as a training platform for students,

non-LLRF experts and operators.

Figure 1 shows a the hardware configuration supporting

half of a cryomodule (one of two RF Station chassis shown)

for the LCLS-II LLRF system. CMOC includes provisions

to include the cavity controller (in the RF Station), a model

of the RF plant (RF amplifier saturation and cavity models),

the cavity probe sensing through the Precision Receiver

and a mechanical model of the cryomodule as well as its

interactions with the cavities’ electrical properties through

ponderomotive forces. The resonance control logic is not

integrated in CMOC at the moment but an emulation of a

piezo actuator is possible from software for cavity tuning

purposes.

CAVITY MODEL

The cavity model responds to a multi-cell cavity structure,

with couplings to the RF source, a cavity field probe and

the beam. The cavity field is decomposed in its eigenmodes,

where each mode is represented by the traditional RLC par-
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allel circuit, coupled to two current sources representing the

High Power Amplifier (HPA) and the beam respectively.

Figure 2: Software implementation of the cavity model.

Ideally, we would like to measure the EM fields from each

mode present in the cavity in order to control them appro-

priately. However, the best we can do is measure the overall

field in the cavity, designated here by ~Eprobe. It is measured

in practice using a probe antenna, and is theoretically given

by

~Eprobe =

∑

µ

~Vµ/

√

Qpµ (R/Q)µ (1)

where ~Vµ is a representative measure of the energy stored

in each electrical eigenmode µ, designated as mode cavity

voltage, and where Qpµ (R/Q)µ is the coupling impedance

of the probe port for that mode.

Alternatively, the expression for reverse (a.k.a. reflected)

wave traveling outward from the fundamental port includes

a prompt reflection term, yielding

~Ereverse =

∑

µ

~Vµ/

√

Qgµ (R/Q)µ − ~Kg (2)

where Qgµ (R/Q)µ is the coupling impedance of the drive

port of mode µ.

Equations 1 and 2 express the measured probe and reverse

fields as a function of eigenmode voltages (~Vµ) and their

respective port couplings, as illustrated in Figure 2. The

state-variable equation governing the accelerating voltage

for each eigenmode at baseband is formulated next.

Electromagnetic Eigenmode

A multi-cell cavity is represented by a series of coupled

resonators (one per cell in the cavity), each represented by

an RLC circuit [5]. Decomposing the EM cavity fields into

eigenmodes and applying the principle of superposition we

obtain the representation expressed by equation 1 [6]. The

equivalent circuit used to represent one cavity eigenmode

is shown in Fig. 3, where each mode’s accelerating voltage

is added in order to obtain the cavity overall accelerating

voltage, as deduced from Eq. 1. Each mode has its own

value of ~V , (R/Q), Qx , and other characteristics that will be

introduced later.

Figure 3: Electromagnetic eigenmode equivalent circuit.

If we apply Kirchhoff’s current law to the mode’s RLC

equivalent circuit (see figure 3, µ refers to a particular eigen-

mode), we get:

~Iµ = ~ICµ
+ ~IRµ

+ ~ILµ
(3)

where:

d~ICµ

dt
= Cµ ·

d2~Vµ

dt2
, (4)

d~IRµ

dt
=

1

RLµ

d~Vµ

dt
(5)

and
d~ILµ

dt
= ~Vµ/Lµ (6)

Differentiating both sides of equation 3 and substituting

using Eq. 6, the full vector (complex) differential equation

for the cavity accelerating voltage ~Vµ can be written as:

d2~Vµ

dt2
+

1

RLµ
Cµ

d~Vµ

dt
+

1

LµCµ

~Vµ =
1

Cµ

d~Iµ

dt
(7)

which can be expressed as a function of the mode’s nominal

resonance frequency ω0µ (1/LµCµ = ω
2
0µ

) and loaded Q

(1/RLµ
Cµ = ω0µ/QLµ

):

d2~Vµ

dt2
+

ω0µ

QLµ

d~Vµ

dt
+ ω2

0µ
~Vµ =

ω2
0µ

RLµ

QLµ

d~Iµ

dt
(8)

Taking the slowly varying envelope approximation [7]

(ω fµ ≪ ω0µ ), separating voltage and current into real and

imaginary parts, assuming that the detune frequency varies

slowly with respect to the carrier frequency (ωdµ
≪ ω0µ )

and that QLµ
≫ 1, we can reduce the order of equation 8

(a second-order band-pass filter centered at the resonance

frequency) to a first-order low-pass filter at baseband [8]:

(

1 − j
ωdµ

ω fµ

)

~Vµ +
1

ω fµ

d~Vµ

dt
= RLµ

~Iµ (9)

where ω fµ = ω0µ/2QLµ
is the mode’s bandwidth and

ωdµ
= 2π∆ fµ is the (time varying) detune frequency, given
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as ωdµ
= ω0µ − ωre f , i.e., the difference between actual

eigenmode frequency ω0µ and the accelerator’s time base

ωref .

Transposing the cavity drive term into a combination of

the RF source incident wave and beam loading (opposite sign

indicating energy absorption by the beam), we can express

Eq. 9 as:

(

1 − j
ωdµ

ω fµ

)

~Vµ +
1

ω fµ

d~Vµ

dt
= 2~Kg

√

Rgµ − Rbµ
~Ibeam (10)

where ~Kg is the incident wave amplitude in
√

Watts, Rgµ =

Qgµ (R/Q)µ is the coupling impedance of the drive port,

~Ibeam is the beam current, and Rbµ = QLµ
(R/Q)µ is the

coupling impedance to the beam. ωf is the mode’s bandwidth

in rad/s and the
ωdµ

ωf
term (the imaginary component of the

mode’s pole at baseband) represents detuning.

The overall QLµ
is given as 1/QLµ

= 1/Q0µ + 1/Qgµ +

1/Qpµ , where 1/Q0µ represents losses to the cavity walls,

1/Qgµ represents coupling to the input coupler, and 1/Qpµ

represents coupling to the field probe. (R/Q)µ is the shunt

impedance of the mode in Ohms, a pure geometry term

computable for each particular eigenmode using E&M codes

like Superfish. Physically, shunt impedance relates a mode’s

stored energy Uµ to the accelerating voltage it produces,

according to

Uµ =

V 2
µ

(R/Q)µω0µ

(11)

The only assumptions in the above formulation are that

the cavity losses are purely resistive, and thus expressible

with a fixed Q0µ , and that no power is launched into the

cavity from the field probe. If other ports have incoming

power, there would be additional terms of the same form as

2~Kg

√

Rg.

The
ωdµ

ω f
term in 10 (the imaginary component of the

cavity pole at baseband) represents detuning. In software or

hardware implementations, we can alternatively modulate

that term with Lorentz perturbations, or use a purely real

pole (ω f ) and modulate the frequency of the drive term. We

prefer the latter, more convenient in computational terms.

We then define a vector ~Sµ such that:

~Vµ =
~Sµe jθµ and

dθµ

dt
= ωdµ

(12)

yielding:

(

1 − j
ωdµ

ω fµ

)

~Sµe jθµ
+

1

ω fµ

*,
d~Sµ

dt
e jθµ
+ ~Sµ · jωdµ

e jθµ+- =
(13)

= 2~Kg

√

Rgµ − Rbµ

~Ibeam (14)

Figure 4: Electro-mechanical coupling block diagram.

The governing equation for the mode’s accelerating voltage

can thus be written as a set of two first order differential

equations (Eq. 15):

d~Sµ

dt
= −ω fµ

~Sµ + ω fµ e−jθµ
(

2~Kg

√

Rgµ − Rbµ

~Ibeam

)

(15)

Note that this state-variable equation is a pure low-pass

filter, an advantage especially in the FPGA implementation.

CRYOMODULE

Here we describe the state-space model representing the

dynamics of the mechanical resonances (also, as in the case

of the electrical modes in a cavity, decomposed into eigen-

modes) as well as the interactions between these mechanical

eigenmodes and the cavity electrical eigenmodes (through

Lorentz forces), piezos and tuners.

Electro-mechanical Interactions

The presence of an EM field inside the cavity generates

forces on the cavity walls, resulting in deformation of the

cavity and subsequently in a shift of the cavity resonance

frequency [9], designated as detune frequency ωdµ
. Each

mode’s fields generate a force proportional to V 2
µ = |~Vµ |2,

and mechanical displacements influence each mode’s in-

stantaneous detune frequency. Construct ωd as a baseline

ωd0 from the electrical mode solution (e.g., −2π(800 kHz)

for the TTF cavity’s 8π/9 mode), plus a perturbation ωµ

contributed from the mechanical mode deflections.

Consider the electrical mode index µ to include not only

electrical eigenmodes of one cavity, but modes of all cav-

ities in the mechanical assembly (e.g., cryomodule). Also

include the dependence on piezoelectric actuator voltages Vκ .

Then if the assembly’s mechanical eigenmodes are indexed

by ν, mechanical forces Fν and displacements xν of those

eigenmodes are related to the electrical system by

Fν =
∑

µ

AνµV 2
µ +

∑

κ

BνκVκ (16)
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ωµ =

∑

ν

Cµν xν , (17)

where A, B, and C are constant matrices.

These matrix calculations are represented in Fig. 4. Note

that in the same way any electrical eigenmode can be coupled

to any mechanical eigenmode, one can configure the matrix

to define couplings only present for intra-cavity interactions.

We have described in detail how to solve for the acceler-

ating voltages for each electrical mode independently, and

the translation between Lorentz forces (Fν) and mechanical

displacements (xν) is represented by the state-space model

of the mechanical eigenmode described next.

Mechanical Eigenmodes

Equations 16 and 17 are understood to apply at every time

instant; the quantities V , F, x, and ω all vary with time.

The differential equation governing the dynamics of each

mechanical eigenmode is that of a textbook second order

low-pass filter. In Laplace form,

kν xν =
Fν

1 +
1

Qν

s

ων
+

(

s

ων

)2
, (18)

where kν is the spring constant. For computational purposes,

we want it expressed in terms of the state-space formulation

d

dt

(

xν
yν

)

=

(

aν −bν
bν aν

) (

xν
yν

)

+ cν

(

0

Fν

)

(19)

where a scaled velocity coordinate yν has been introduced.

Convert the latter equation to Laplace form and solve to get

(

xν
yν

)

=

(

aν − s −bν
bν aν − s

)−1

·
(

0

Fν

)

(20)

Analytically invert that 2 × 2 matrix, and multiply out to get

xν =
−bνcνFν

(aν − s)2
+ b2

ν

. (21)

Equate coefficients with the earlier low-pass filter form, in

the case Q > 1
2
, to get

aν ± jbν = ων
*.,
−1

2Qν

± j

√

1 −
1

4Q2
ν

+/- (22)

cν = −
1

kν
·

a2
ν + b2

ν

bν
= −

ω2
ν

kνbν
. (23)

A deeper understanding of the forces and responses of

a single electrical eigenmode µ of the cavity comes from

Slater’s perturbation theory. For an eigenmode solution
~Hµ (~r) sin(ω0µ t), ~Eµ (~r) cos(ω0µ t) to Maxwell’s equations

in a closed conducting cavity (volume V ), the stored energy

Uµ is given by

Uµ =

∫

V

[
µ0

4
H2
µ (~r) +

ε0

4
E2
µ (~r)

]
dv . (24)

Suppose a mechanical eigenmode ν involves small deflec-

tions xν · ~ξ (~r), where xν gives the amount of deflection, and

the dimensionless quantity ξ (~r) represents the mode shape.

Both the force on the mode and the response to a deflection

xν are given in terms of the Slater integral

Fµ =

∫

S

[
µ0

4
H2(~r) −

ε0

4
E2(~r)

]
~n(~r) · ~ξ (~r)dS , (25)

where ~n(~r) is the normal vector to the cavity surface S, and

Fµ directly gives the force. Note in particular the subtraction

of E and H terms, contrasted with the addition in the energy

integral. Also notice the dot product of the deflection shape

with the surface normal. Then

∆ωµ = −xνω0µ

(

F

U

)

µ

(26)

and

Fµ =

(

F

U

)

µ

· 1

(R/Q)µω0µ

V 2
µ , (27)

where (F/U)µ is a property of the electrical eigenmode,

independent of amplitude, with units of m−1. Thus

Aνµ =

(

F

U

)

µ

·
1

(R/Q)µω0µ

, (28)

and

Cµν = −ω0µ

(

F

U

)

µ

(29)

Slater’s analysis above lets us express the static Lorentz

response as

(

∆ω

V 2

)

νµ

=

Cµν Aνµ

kν
= −

(

F

U

)2

µ

· 1

kν (R/Q)µ
(30)

correctly showing that this constant is always negative: the

mode’s static resonance frequency gets lower as it is filled.

Summing over all mechanical modes ν gives the total DC

response, often quoted in units of Hz/(MV/m)2.

Using electrical measurements alone, it’s not possible to

constrain the scaling of xν . It is therefore helpful to rescale

xν and Fν each by a factor of
√

kν , and eliminate kν from

the equations. Instead of conventional units (m and N) for

x and F, they now both have units of
√

Joules, so that x · F
still represents energy. In this rescaled no-k case,

Aνµ =
1

ω0µ

√

−
1

(R/Q)µ

(

∆ω

V 2

)

νµ

(31)

Cµν = −ω0µ

√

−(R/Q)µ

(

∆ω

V 2

)

νµ

. (32)

It is perhaps an unexpected result that the cross-coupling

between cavity modes (e.g., excite the π mode, measure ∆ω
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for the 8π/9 mode) is quantitatively predicted from measure-

ments of each mode individually, with the exception of the

choice of sign of the above radicals. All that is required is

confidence that mechanical modes are correctly identified

and non-degenerate.

HDL IMPLEMENTATION

The overall architecture of CMOC matches that of a real

accelerator with a single-cavity single-source type of config-

uration as shown in figure 1. The Verilog implementation

is flexible and makes use of generate loops to replicate in-

stances for each building block to match a particular config-

uration. The controller implementation shown here is the

one use in the real accelerator, hence the interest of running

the live simulation using CMOC. The cryomodule physics

model architecture is shown in figure 5 and implemented in

an FPGA. The cavity electromagnetics simulator contains

a 1st order low-pass filter for each Electromagnetic eigen-

mode, which are driven by the HPA and beam (combined

into the drive signal in the block diagram). The mechanical

eigenmodes are represented by the mechanical eigenmode

propagator. The couplings between electromagnetic and

mechanical eigenmodes are computed in the V 2 of each elec-

tromagnetic mode is transformed into Lorentz force by the

outer product blocks and the mechanical displacements are

transformed into frequency shifts by the dot product blocks.

The diagram shows an example of a single cavity with two

eigenmodes (the fundamental π mode and the 8π/9 mode, of

especial interest due to the proximity to the fundamental in

TESLA-like cavities), where cavity-to-cavity interactions are

propagated in the same fashion. The diagram also shows the

virtual piezo interacting with the cavity mechanical modes

as well as environmental noise sources, also coupling to the

cavity electromagnetic eigenmodes through the mechanical

structure.

The mathematical development so far showed the de-

composition of the electrical and mechanical fields into

eigenmodes leading to their state-space formulation in equa-

tions 15 and 19. In the interest of brevity, we show the

discretization of the second-order equation from which one

can deduce the reduced form for the implementation of the

first order low-pass filter for the electrical mode computa-

tion.

Physics Model Implementation

The matrix calculations shown in Fig. 4 are applied every

time step following equations 16 and 17. The box labeled

“Mechanical Mode Dynamics, 2nd-order LPF” takes Lorentz

forces for each mechanical eigenmode as an input (Fν) and

produces a mechanical displacement (xν). This corresponds

to Eq. 19, the state-space formulation of the 2nd-order low-

pass filter. Expanding that equation in matrix form, two

expressions appear:

dxν

dt
= aν xν − bνyν , (33)

and

Mechanical

eigenmode

propagator

zy=My+d

Electromagnetic

eigenmode

propagator

resonator.v

cav4_mode.v

Electromagnetic

eigenmode

propagator

cav4_mode.v

Cavity electromagnetics simulator

cav4_elec.v

Drive

Forward

Reflected

Probe

v2

∆ω

outer

outer_prod.v

dot

dot_prod.v

v2

∆ω

outer

outer_prod.v

dot

dot_prod.v

Σ

Σ

to additional cavities

outer

outer_prod.v

Virtual PiezoPiezo control

drive position

m mechanical modes
updated every 2m cycles

IQ

Outputs at IF
updated every 10 ns

m time-multiplexed complex
values in eigen-coordinates

V

(π mode)

(8π/9 mode)

Gaussian noise

Environmental sources

Beam timing

pair_couple.v

upconvert

Σ

Σ

outer

outer_prod.v

Figure 5: Physics model architecture.

dyν

dt
= bν xν + aνyν + cνFν (34)

where:

aν =
−ων
2Qν

(35)

bν = ων

√

1 −
1

4Q2
ν

(36)

cν = −
ων

kνbν
(37)

These displacements influence each electrical mode’s in-

stantaneous eigenmode frequency ωµ as follows:

ωµ =

∑

ν

Cµν xν (38)

where C is the coupling matrix from mechanics to EM.

In order to discretize this equation, we will use the su-

perscript n to indicate the current time iteration. Hence

the following time step is superscripted by n + 1. We can

thereby approximate a time derivative of a variable A in the

following fashion:

dA

dt
≈

An+1 − An

T
(39)

where T is the time step size (usually expressed as ∆t).

Discretizing Equations 33 and 34, we find:

xn+1
ν =xnν + T (axnν − bynν ) (40)

=xnν (1 + Taν) − Tbνy
n
ν (41)

yn+1
ν =ynν + T (bxnν + aynν + cFn

ν ) (42)

=ynν (1 + Taν) + T (bν xn + cFn
ν ) (43)
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Figure 6: Cavity controller.

Fixed-point Scaling and Resources

Software simulators have the luxury of basing their cal-

culations on numbers kept in normalized or SI units, since

floating-point hardware has become standard on workstation-

class computers. Current FPGA hardware resources do nor-

mally include hardware multipliers, but they are integer units,

typically limited to 18×18 or slightly higher.

Scaled fixed-point arithmetic is used in all the steps de-

scribed here. This requires attention in the problem setup to

make sure that the quantities stay in a useful range, without

overflowing or wasting precision. A simple example is the

register holding cavity field ~Vµ. The UI that configures the

system requires selection of the largest representable field,

and the register holds the binary fraction of that maximum.

A similar argument holds for ~Ereverse, except this time choos-

ing a maximum is easier since it corresponds to a (modeled)

ADC channel. Now the scaling of the coefficient connecting

the two, 1/
√

Qgµ (R/Q)µ, is well-determined and can be set

by the UI.

Most of the data paths are based on complex numbers.

We interleave I and Q on a single data path, saving nearly

a factor of two in resources, with only minor complication

of the control logic. For instance, a full-speed complex

number multiplier takes two (scalar, fixed-point) hardware

multipliers instead of four to provide a result at the maximum

system data rate. To compensate for this interleaving, we

run the simulation at twice the clock rate of the (simulated)

ADCs.

With these techniques, the simulator for a single electri-

cal mode consumes eight hardware multipliers. A typical

configuration simulating three modes (7π/9, 8π/9, π) and

a serialized DSP engine for the the mechanical modes con-

sumes 27 multipliers total for a cavity system.

Controller Implementation

The core of the controller design is a Self-Excited-Loop

(SEL), which has well understood [10] advantages for op-

erating very narrow-band SRF cavities. Our flexible digital

implementation, see figure 6, allows conceptually simple se-

lection of amplitude-locked or not, and phase-locked or not,

by adjusting clip limits on the PI controllers for amplitude

and phase. The actuator for the phase loop is the reactive

(imaginary) component of the drive signal, such that the

amplitude loop has no response to cavity detuning.

The important features of an SEL data path were clearly

laid out in 1978, although using analog terminology. A

modern rendition of the block diagram in the digital domain,

loosely following JLab’s experience, is shown in figure 6.

Where SPR stands for stateful phase resolver, and it is only

used in the phase channel.

Pure cavity-resonance-following SEL mode is easily set

up with the above hardware by setting amplitude and phase

KI to zero, and using the amplitude loop saturation values

to set the drive level. The Y input to the output CORDIC

is set to zero at this point, and the phase offset needs to be

given the right value for SEL operation.

Closing the amplitude loop is easily accomplished by

putting in moderate values of KP and KI , and providing

some separation between the lower and upper limits for drive

amplitude.

With the amplitude stabilized, it’s just as easy to close

the phase loop. Here the stateful phase detector comes into

play, forcing its output to ±π/2 when the phase is spinning

counterclockwise or clockwise. Only when the frequency

error approaches zero does the output follow the input. Using

the Y output CORDIC on the output of the phase loop gives

natural amplitude compensation for detuning, as discussed

by Delayen. In combination with the stateful phase detector

and moderate values for the phase KP and KI , phase lock

is naturally obtained by opening up the saturation limits

on the phase channel. If XNOM is the on-resonance drive

amplitude, the peak amplitude used for phase lock (including

off-frequency operation) becomes

√

X2
NOM
+ Y 2

LIM
.

The real and imaginary clip limits will, in the end, be

set to align with the power capabilities of the high-power

amplifier, the fundamental power coupler’s Q, beam current,

and the allocated peak microphonic detuning.

In final phase-lock mode, there is a possibility of com-

puting the small-signal proportional gain term separately,

bypassing the CORDIC blocks and therefore achieving lower

latency. It has been shown that system stability is primarily

sensitive to the proportional term latency, not the integral

term latency.

Noise Generator

ADC noise is modeled as Additive White Gaussian Noise

(AWGN). A set of n uniform noise bits are added together

to approximate the Gaussian distribution. Currently n =

26, giving an rms noise of 2.55 bits and a peak/rms ratio

of 5.10. After dividing by two, this gives a white noise

component that approximately matches measurements on a

14-bit LTC2175. The uniform noise bits are generated using

the TT800 LFSR [11]. No attempt is made to model 1/ f

noise.

Communications

FPGA registers in the CMOC simulation engine and the

cavity controller are accessible from software through the
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Figure 7: CMOC user interface.

network via GbE. This access is made possible by an in-

fabric implementation of the GbE protocol developed at

LBNL [12], which encodes and decodes UDP packets. En-

capsulated inside the UDP payload there are register read and

write commands to set configuration registers, read status

registers, and to extract waveforms.

SOFTWARE IMPLEMENTATION

The software stack to support CMOC implements the

drivers to communicate with the FPGA over UDP, a middle

layer for conversion between Physics units and FPGA register

values, and a user interface. The current implementation

is based on Python, and optionally communicates with the

FPGA directly over Ethernet without the intermediary of a

control system [12].

CMOC serves as a platform for the development of the

LLRF EPICS IOC. In addition to the user interface, CMOC

has been the test bed used for the development of automation

scripts used to tune the LCLS-II cavities [13], which have

then been directly transferred for use in real cavities at the

LCLS-II cryomodule test-stand at FNAL [14].

Python-based tools are used to parse the CMOC Verilog

code at compile time and automatically generate a register

map in JSON format. The same register map is then used on

the software side and configuration registers are presented to

the user. The JSON file is also stored (in compressed form)

inside the FPGA, so one can retrieve the configuration from

a running FPGA. Other information, such as the Git commit

SHA hash, is also stored in the FPGA logic at compile time

so as to be available at run time. There is a conversion layer

between the Physics (SI) units presented to the user and the

FPGA register values. In some case this translation is more

involved than scaling and some assumptions are made on

register names to establish the link between the register and

their semantics.

The user interface (shown in figure 7) is based on Kivy

[15], an Open Source Python library for user interface de-

velopment. It allows the user to view waveforms generated

by CMOC at the same rate as the implementation with real

cavities. Waveform display is available in different formats:

I-Q waveforms, amplitude and phase, 3D live display of the

waveform vectors and FFTs. The user is then presented with

sliders for the configuration registers, for which the user

interface loads the register map when it’s launched. The

user interface application also runs a configuration script to

load default values onto CMOC at start-up and provides the

possibility to run Python scripts to interact with CMOC from

the user interface. In order to have access to these scripts

from the user interface, the user stores Python scripts in a

user directory and the user interface automatically generates

buttons at start-up for the user to launch them.

OPEN SOURCE

The implementation of the CMOC simulation engine has

been entirely written in various programming languages

without the use of black boxes or proprietary software. The

authors have requested the University of California to release

the code to the public along with the documentation on

the implementation and the physics involved and is being

reviewed by LBNL’s Technology Transfer Department at the

time of this writing. As soon as it is approved for release it

will be available on the LBNL (a.k.a. Berkeley Lab) GitHub

page [16].

CONCLUSION

CMOC takes the FPGA-based LLRF system development

cycle one step closer to the final implementation before it is

tested with real cavities. It provides a framework to verify

cavity controller implementations in HDL as well as the com-

munications logic, drivers and higher level software tools.

It is implemented in Verilog without the use of proprietary

IP cores and is therefore portable for use under different

FPGA-based platforms. It generates physically meaningful

waveforms presented through a user interface the same way

real cavity signals would, which can be used as a training

platform for operators, users or developers as well as a test-

ing framework for both HDL and software development of

LLRF applications. It is currently in the process of being

reviewed by LBNL’s Technology Transfer Department for

release to the public.
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