
SOLVING VENDOR LOCK-IN IN VME SINGLE BOARD COMPUTERS

THROUGH OPEN-SOURCING OF THE PCIE-VME64X BRIDGE

Grzegorz Daniluk∗, Juan David Gonzalez Cobas, Maciej Suminski, Adam Wujek,

CERN, Geneva, Switzerland

Gunther Gräbner, Michael Miehling, Thomas Schnürer

MEN, Nürnberg, Germany

Abstract

VME is a standard for modular electronics widely used

in research institutes. Slave cards in a VME crate are con-

trolled from a VME master, typically part of a Single Board

Computer (SBC). The SBC typically runs an operating sys-

tem and communicates with the VME bus through a PCI

or PCIe-to-VME bridge chip. The de-facto standard bridge,

TSI148, has recently been discontinued, and therefore the

question arises about what bridging solution to use in new

commercial SBC designs. This paper describes our effort to

solve the VME bridge availability problem. Together with

a commercial company, MEN, we have open-sourced their

VHDL implementation of the PCIe-VME64x interface. We

have created a new commodity which is free to be used in

any SBC having an FPGA, thus avoiding vendor lock-in and

providing a fertile ground for collaboration among institutes

and companies around the VME platform. The article also

describes the internals of the MEN PCIe-VME64x HDL

core as well as the software package that comes with it.

INTRODUCTION

The VME (Versa Module Europa) modular electronics

standard emerged from the VME bus electrical standard and

the Eurocard mechanical form factor. The former is a parallel

communication bus developed in the 1980’s. The latter

defines the dimensions of Printed Circuit Boards (PCBs)

as well as the mechanics of a rack hosting multiple cards.

VME usually comes as a multi-slot chassis with a power

supply and a fan tray (Fig. 1). Depending on the needs of

a particular application, various types of VME crates are

available in the market, starting from the smallest 1U, 2-slots

to 9U, 20-slots with a possibility of having Rear Transition

Modules (RTMs). These are the boards that are plugged

to the slots at the back of a typical VME crate. They don’t

have direct access to the VME bus in the backplane, but

instead connect to the corresponding modules installed in

the front slots of a crate. Usually an RTM would be a quite

simple board routing signals from cables connected in the

back of the crate, to a front VME Slave board. The front

module, on the other hand, is a more complex PCB with

for example ADCs and an FPGA to process inputs and/or

generate outputs going to a controlled system. A typical

VME crate is deployed with one or multiple VME Master

cards controlling several Slave cards. The Master module

is very often a Single Board Computer (SBC). This is in

∗ grzegorz.daniluk@cern.ch

Figure 1: VME chassis example.

fact a miniaturized PC running some operating system (e.g.

Linux) and communicating with higher layers of the control

system over an Ethernet link.

Despite, the availability of more modern standards, like

MicroTCA or PXIe, VME is still a widely used solution for

not only control systems in research facilities, but also in

industrial and military applications. The reason behind that

is all the already existing investment in the technology and

the usual long lifetime of modular electronics in the fields

mentioned above. People are reluctant to upgrade their criti-

cal systems and redesign their application-specific boards,

once they have spent a long time to make them robust and

reliable. For all these applications also the VME bus perfor-

mance is very often sufficient, which delays modernization

plans even further. Taking the CERN accelerators case as an

example, we currently have almost 900 VME crates installed

in various operational and lab systems. Out of those, about

50 new crates were installed only in 2016. We still plan to

install about 200 new VME crates in various renovations

during Long Shutdown 2 in 2019-2020.

VME BUS

VME bus was originally developed in the 1980’s for Mo-

torola 68k processors as a multi drop, parallel bus with big

endian byte ordering [1]. It is organized as a master-slave

architecture, where master devices can transfer data to and

from slave cards. In practice, the majority of setups use a

single master, multiple slaves configuration. It is a quite

slow communication bus for today’s standards. For the base

specification, it can reach 80MB/s throughput. An absolute

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUAPL03

Hardware Technology
TUAPL03

131

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



maximum data rate of 320MB/s can be achieved using the

2eSST extension [2].

VME bus is asynchronous, which means there is no com-

mon clock to be used for data transfer among all cards in the

crate. Instead, 4-edge handshaking is used to validate data

and for flow control. This, together with the fact that the bus

lines are shared among all the devices, means that the over-

all performance of the system is determined by the slowest

module. The standard splits the communication lines into

four sub-buses:

• Data Transfer Bus - address, data and control lines for

data transfers

• Data Transfer Bus Arbitration - used in multi-master

setups to arbitrate bus accesses among all the masters.

• Priority Interrupt Bus - 7 prioritized interrupt lines and

acknowledge daisy chain

• Utility Bus - reset, 16MHz system clock, power infor-

mation signals

There are various size of data transfers possible in the VME

environment, but in general they can be collected in two

main groups: single cycles and block transfers. The type of

transfer is determined by address modifier lines AM[5..0] -

part of the Data Transfer Bus. Although the standard defines

32 address and 32 data lines, not all of them have to be used

for a given transfer. The number of valid address bits is also

determined by the address modifier with possible options

being A16, A24 and A32 (respectively 16, 24 and 32 address

lines used). Typically a VME slave would respond to one

of the addressing modes. The data bus can also be used

partially to read/write 8, 16 or 32 bits in a single cycle (D8,

D16, D32 modes).

Figure 2 shows how a single cycle VME access is done

between master and slave devices:

Figure 2: Example single cycle VME access.

1. Master requests the bus access by driving BR bus re-

quest line.

2. If BBSY line is idle, i.e. no other master is currently

holding the bus, the arbiter drives the BG line (bus

granted) to allow the requesting master to take control

over the bus.

3. Master sets the transfer type to A24 single cycle with

the address modifier lines (AM[5..0]); puts the address

it wants to access (for A24, only 24 addressing bits are

valid); asserts the address strobe (AS line).

4. Master puts data on the bus and asserts data strobe (DS

lines) to validate the data word.

5. Slave reads the data from the VME bus and drives data

acknowledge (DTACK).

6. Master releases data strobe after receiving acknowledge

from the Slave.

7. Slave releases data acknowledge.

8. Master releases address strobe and bus busy lines. The

transfer is finished and the bus is released for another

operation.

The single cycle accesses are a good way to read/write

a few bytes. However, they are not a very efficient way

for transferring larger blocks of data. For these, the VME

standard defines also block transfers (BLT) and multiplexed

block transfers (MBLT). The former is based on the single

cycle access mechanism described before. It sends multiple

data words one after another using the data strobe and data

acknowledge lines for each of them. The difference is that

the state of the address lines does not change during the

whole transfer. Instead, both master and slave use their

internal counters to increment the address for each data word.

The multiplexed block transfer brings another performance

improvement. It uses address lines together with data lines

to transfer 64 bits of data in each cycle.

In all transfer types mentioned till now, the master device

is the originator of the read or write cycle. In real-world ap-

plications, where the slave could be a multi-channel ADC, it

is more efficient if it has a way to indicate when there is some

data to be fetched. For this purpose VME bus uses the Prior-

ity Interrupt sub-bus. There are 7 interrupt lines IRQ[7..1]

mapped to 7 interrupt priorities and the interrupt acknowl-

edge IACK daisy chain. If any of the VME slaves wants to

generate an interrupt, it drives the IRQ line for a desired

priority and waits for the IACK from the interrupt handler.

Each VME board gets IACK from the previous board in a

VME crate and forwards it to the next one (if it is not waiting

for IACK). This ensures that only one slave responds to the

acknowledge. If there are multiple VME slaves generating

interrupts of the same priority, the one closer to slot 1 is

served first. The interrupt handler upon detection of any of

the IRQ[7..1] lines going down, originates a special single

cycle access to read the 8 bit IRQ vector. This IRQ vector

identifies the slave that has generated the interrupt.

Since all slaves installed in a VME crate are connected to

the same VME bus, they need to be uniquely addressed to

distinguish transfers designated to each one of them. In the

original VME bus standard, every slave card in the system

had its own base address and IRQ vector set mechanically

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUAPL03

TUAPL03
132

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology



with on-board jumpers or dip switches. Later, the VME64x

extensions added the CR/CSR configuration space with ge-

ographic addressing for plug&play functionality [3]. With

these improvements, base addresses do not have to be set

mechanically for every deployed board. Instead, each slave

has a well defined Configuration ROM (CR) and a set of Con-

trol and Status Registers (CSR). The address of CR/CSR

space for each card can be derived from the slot number

where the card was plugged (geographical addressing) and

can be accessed by using a special address modifier 0x2F.

During initialization, the master relocates each module to

the desired base address by writing it to the CR/CSR space.

Other VME extensions also introduce fast data transfer

modes like 2eVME and 2eSST [2]. These however are not

used in CERN VME systems and are outside the scope of

this paper.

PCI-EXPRESS BUS

PCI-Express (PCIe) is a high speed, serial communication

bus found in all modern computers. Although the first official

standard for PCIe 1.0 was published in 2002, the technology

has been improved several times since then. At the time

this paper is written, PCIe 4.0 is released and the work has

officially started for standardizing PCIe 5.0.

In contrast to the VME bus introduced in the previous

section, PCI-Express is based on serial, point-to-point com-

munication. It uses differential pairs for full-duplex data

transfer and two of such pairs create what is called a PCIe

lane. In the simplest scenario (and the slowest data rate) a

PCIe link can have just a single lane (PCIe x1). In that case,

for PCIe 1.0 the maximum data rate is 250MB/s. For higher

throughputs, multiple lanes can be combined for interleaved

data transfer. The most common configurations are: x2, x4,

x8 and x16 with 2, 4, 8 and 16 PCIe lanes. Figure 3 shows a

typical PCIe system. It consists of several different devices:

Figure 3: PCI Express topology.

• Root Complex - connects CPU and memory to the PCIe

system and may have several ports.

• Endpoint - peripheral device connected to the bus (e.g.

network interface, graphics card, etc.)

• Switch - multi-port device that allows connecting sev-

eral Endpoints to a single port of the Root Complex.

• Bridge - translator used when another bus needs to be

connected to the PCIe system (e.g. legacy PCI hard-

ware).

Originally, when PCIe was introduced the PCIe Root Com-

plex was connected to the CPU through the north bridge.

Later however, manufacturers started integrating it together

with the memory controller onto the processor die.

Similarly to computer networks, PCIe uses packets to send

data between the Root Complex and Endpoints. Since there

are no extra lines like in parallel buses, also all the control

messages and interrupts are sent as packets using those same

data lanes. To analyze how these packets are assembled and

sent over the fabric, the standard [4] splits the PCIe protocol

into logical layers: Transaction Layer, Data Link Layer and

Physical Layer.

The Transaction Layer encapsulates all read/write trans-

actions and events into Transaction Layer Packets (TLPs).

It also maps each request coming from software to one of

the 4 transaction types:

• Memory read/write - transfer to a memory mapped

location

• I/O read/write - transfer to an I/O mapped location

• Configuration read/write - transfer to configure a device

and read its capabilities

• Messages - special events like legacy interrupts or

power-management.

This layer also manages point-to-point flow control by using

a credit-based mechanism. Since a PCIe system contains

switches and multiple Endpoints may be connected to a sin-

gle Root Complex port, TLPs have to be addressed to mark

their destination. There are several addressing schemes avail-

able in PCIe systems. For memory and I/O read/writes, the

TLP header has a 32 or 64-bit destination address field. Each

PCIe device has a set of Base Address Registers (BARs) to

store their base addresses assigned during bus enumeration

(using configuration requests). For Configuration requests,

the TLP header specifies a set of IDs for the bus, device and

function numbers. Messages use a special type of addressing

e.g. to Root Complex or broadcast from Root Complex.

The Data Link Layer manages the PCIe communication

link. It prefixes the TLPs sent by the Transaction Layer with

a sequence number. It also ensures data integrity by error

detection and correction, and manages retransmission when

needed.

The Physical Layer is the closest one to the actual wires

connecting PCIe devices. Therefore it is responsible for

impedance matching, data serialization/deserialization and

contains logic responsible for initializing and maintaining

the interface. Before TLPs are serialized in the Physical

Layer they are first encoded using a 8b/10b or 128b/130b

scheme (depending on the PCIe generation). For example

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUAPL03

Hardware Technology
TUAPL03

133

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



8b/10b encoding maps every 8-bit word into a 10-bit symbol

so that the output data stream is DC balanced (does not

contain a DC component). It also ensures there are enough

state transitions that the PLL in the Physical Layer of a

receiving device is able to recover the clock signal from the

received data stream.

PCIe devices can also generate interrupts to the host CPU.

These are also packets sent through the PCIe fabric and we

call them Message Signaled Interrupts (MSI). MSIs are in

fact regular memory write transactions originated by the in-

terrupters to a predefined address. This address is configured

by the CPU during device initialization.

WHY ANOTHER BRIDGE?

For many years, computers have been able to use buses

like PCI or PCI-Express to communicate with their periph-

erals. Nowadays every PC-class processor has a built-in

PCIe Root Complex with multiple ports. However, there are

no processors that would have an integrated VME master

interface. In consequence, every VME Single board com-

puter needs to have a PCI or PCIe to VME bridge. Till

mid-2015 the IDT TSI148 chip was the de-facto standard

bridge used in many VME systems. However, it has been

discontinued, therefore the question has arisen about what

bridging solution should be used in new commercial SBCs.

For the CERN VME installations we were providing our

users with MEN A20 Single Board Computer boards. Since

these were also using the obsolete TSI148 chip, we had to

find a new solution. We issued a call for tender for supplying

new SBCs for the next few years. There were three possible

options specified for the PCI/PCIe to VME64x bridging:

• the company should have enough stock of TSI148 chips

to be able to produce the number of boards specified in

the contract

• use the Tundra Universe II, the predecessor of TSI148

• use FPGA technology - in that case we required the

bidders that the complete HDL sources for the FPGA

design shall be made available through a GPL3-or-later

license.

Besides the first two obvious choices, we knew there

were companies with proprietary implementations of VME

bridges done in FPGAs. Previous generations of SBC we

used at CERN (before TSI148-based boards) had a PowerPC

processor with an FPGA attached to it for interfacing to a

VME bus. Therefore, with the last option in the call for

tender we hoped that at least one of these companies would

be ready to open-source their implementation. On the other

hand, to keep fair conditions to anyone submitting their of-

fers, we did not give preference to any of these options. The

final selection of the company was based on the price offer

submitted to the call for tender. In the end, the company

with the best pricing offer to be granted the contract was

MEN from Nürnberg, Germany. They proposed their brand

new A25 card to be a next generation VME Single Board

Computer used in CERN installations.

MEN A25 is based on the Intel server class, 4-core XEON

processor connected to 8GB DDR3 RAM. To interface to

the VME bus an FPGA-based PCIe-to-VME bridge is used.

MEN has made their own VHDL implementation using an

Intel Cyclone IV FPGA. After the company was granted the

contract, we started working with them to test and validate

the A25 board for CERN VME installations and to publish

their VME bridge implementation. As a result, all the VHDL

sources are available under the GPL3-or-later license and

the Linux driver package under the GPL2-or-later license

in the pcie-vme-bridge project page of the Open Hardware

Repository [5].

Open sourcing the PCIe-to-VME bridge is a big step not

only for CERN, but also for all other places around the world

where VME is still in use. First of all, we do not depend

any more on a particular vendor discontinuing their VME

bridging solution. Even if the FPGA chip that is currently

used becomes obsolete, having complete VHDL sources lets

us port the bridge to various other FPGA families. Thanks

to the fact that the design is open, any institute or company

can now not only buy an existing MEN A25 product but also

build any other VME Single Board Computer that would

use the same VME bridge. Using the same VME bridge

means also the same Linux kernel and userspace VME API

for all institutes/companies. In the future, this should allow

us to collaborate more efficiently in the VME world and have

more freedom to share and re-use Linux kernel drivers for

the VME Slave boards that we design.

FPGA IMPLEMENTATION

The MEN PCIe-to-VME bridge translates the read and

write operations in the PCIe address space to read and write

transactions on the VME bus. It acts as a PCIe Endpoint

on one side and VME bus Master on the other. The bridge

can generate VME single cycles and block transfers. The

following access types are currently supported:

• VME single cycles: A16, A24, A32 with any of the

D8, D16, D32 data widths

• VME block transfers: A16, A24, A32 with any of the

D8, D16, D32 plus the A32D64 multiplexed block

transfer (MBLT)

The VME block transfers are executed by a built-in Direct

Memory Access (DMA) engine, where the blocks of data

are transferred between the system memory and the VME

bus, bypassing the CPU. In general this is a faster and more

efficient way of exchanging multiple data words, as the CPU

is free to continue its normal operation until the DMA en-

gine is done with a programmed task. The bridge supports

also some features added in the VME64x extensions. It is

able to use the geographical addressing pins and generate

a special type of A24 access to read and write the CR/CSR

configuration space of VME slaves installed in the same

crate. However, none of the fast transfer modes (2eVME,

2eSST) is currently implemented.

The internal HDL architecture of the PCIe-to-VME bridge

is presented in figure 4. It is built around the Wishbone (WB)

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUAPL03

TUAPL03
134

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology



Figure 4: PCIe-to-VME bridge HDL architecture.

bus, an open-source computer bus often used in FPGA de-

signs. The bridge is split into several VHDL modules com-

municating together through the central Wishbone Intercon-

nect block. Each of these modules has its own function and

can either control other modules (is a Wishbone Master), be

controlled (is a Wishbone Slave) or have both interfaces:

• PCIe2WB - PCI Express x4 version 1.1 Endpoint with

both WB Master and WB Slave interface.

• VMEbus - VME Master with both WB Master (for

DMA transfers) and WB Slave (for single cycle ac-

cesses) interface.

• Flash - WB Slave module that interfaces the Flash chip

outside the FPGA

• SRAM - WB Slave module that interfaces the SRAM

chip outside the FPGA

• Version ROM - WB Slave module with FPGA memory

blocks initialized at synthesis time with various infor-

mation about the firmware (the so called chameleon

table).

The PCIe2WB module is in fact a wrapper for the Intel

auto-generated IP core. This IP core customizes a PCI

Express IP block hardened in the Cyclone IV FPGA chip.

Currently we use it as a four-lane PCIe version 1.1 interface

with vendor Id and device Id specified by MEN. It provides

several memory windows assigned to 4 Base Address

Registers. These memory windows are then mapped to the

wishbone addresses and therefore allow accessing the WB

Slave devices as well as generating different VME accesses

(see table 1).

The VMEbus module can act as both a VME Master and

a VME Slave. However, in this paper and for the VME

Single Board Computer application, we focus only on its

VME Master functionality. It provides several Wishbone

address spaces for various types of access (A16, A24, A32,

CR/CSR). These WB windows are then directly mapped to

the PCIe memory windows, therefore accessing one of the

PCIe windows automatically generates a VME bus access

of appropriate type and data width.

The behavior of this module depends on the detected

VME crate slot where it is installed. If slot 1 is detected,

Table 1: PCIe Memory Windows

BAR no. name offset

BAR0 Version ROM 0

BAR0 Flash 200

BAR0 VMEbus - registers 10000

BAR0 VMEbus - A16D16 access 20000

BAR0 VMEbus - A16D32 access 30000

BAR1 SRAM 0

BAR2 VMEbus - A24D16 access 0

BAR2 VMEbus - A24D32 access 1000000

BAR3 VMEbus - A32 access 0

BAR4 VMEbus - CR/CSR access 0

the bridge generates system clock and reset signals to the

VME backplane. An arbiter module is also activated in that

case, thus the card can arbitrate accesses in multi-master

environments by driving the Bus Granted line. The VMEbus

VHDL module can also read the VME interrupt lines of

all 7 levels. The built-in VME interrupt handler can be

configured to forward only a subset of the priorities when

needed. Apart from the standard cycles the bridge has also

an option to perform a read-modify-write cycle. In that case

the bus is blocked after the first read until a consecutive write

is done to the same address. The module is also equipped

with bus debugging components. There are two independent

location monitors that can be programmed with a VME

address value (one for each). These modules, when armed,

constantly monitor the bus and generate interrupts to the

CPU when the required address is detected on the VME bus.

The VMEbus VHDL module is also equipped with a

Direct Memory Access (DMA) engine. It is responsible for

performing block transfers and multiplexed block transfers

between the VME bus and the system memory without

the active control of the CPU during the transfer. The

controller can be configured by writing a set of linked

buffer descriptors to the SRAM area (maximum 112). Each

descriptor specifies the complete information about the

transfer like: the source and destination device, size of the

transfer, source and destination address, VME modifier and

data width (for VME transactions). Additionally one can

specify if the DMA should automatically increment the

source or destination address for each transferred word in

the block, e.g. for transferring data words to SRAM. The

source and destination device can be any of of VME bus,

PCIe2WB or SRAM modules.

Besides these two main VHDL modules there are also a

few smaller ones in the bridge design. The SRAM block

is a VHDL core that translates 32-bit data width Wishbone

accesses into the 16-bit SRAM interface. The Flash module

instantiates the Intel Remote Update IP core which lets us

access the on-board Flash memory. It is used to store the

FPGA image and program it when the board is powered up.

In fact, we store there two images, the fail-safe image (at ad-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUAPL03

Hardware Technology
TUAPL03

135

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



dress 0x000000) and the main image (at address 0x200000).

This way, the fail-safe image is flashed only once at produc-

tion time and it has to provide at least the PCIe access to

the Flash HDL module. The main image we can re-write

over the PCIe interface whenever we want to release a new

bridge firmware. When the board is powered on, the FPGA

gets configured with the main image. However, if for some

reason the main image is corrupted, the FPGA is configured

with the fail-safe image.

Finally, the last HDL module present in the PCIe-to-VME

bridge design is the Version ROM. It is in fact an instantia-

tion of FPGA RAM memory blocks initialized at synthesis

time. The ROM content is a binary called the Chameleon

table generated from an *.xls file. This *.xls contains

various information about the FPGA bitstream including:

firmware version number, Wishbone addresses and PCIe

BAR mappings for each HDL module. The Version ROM

is read by the software tools and Linux kernel drivers that

access the FPGA.

The whole bridging design described briefly in this sec-

tion occupies about 30% of the Intel Cyclone IV EP4CGX30.

This means that even on its current hardware platform (MEN

A25 Single Board Computer) there is still plenty of space

for new features. To facilitate any future developments, we

have published together with MEN also their set of VHDL

testbenches for the described bridge design. They use an In-

tel PCI Express bus functional model (BFM) to transfer test

data patterns between the PCIe and VME interfaces of the

bridge. The testbench is fully automated and includes both

the stimulus generator and the verification module. It runs a

set of tests for both the VME Master and Slave functionality

where various access types are checked. After that, also the

interrupt handler and various possible configurations of the

DMA engine are verified.

LINUX KERNEL DRIVERS PACKAGE

MEN provides a set of Linux kernel drivers to access

the FPGA bridge from the operating system that can be

compiled for both 32 and 64-bit architectures. After the

drivers are loaded, they require manual creation of character

devices, where each of them represents a different VME ac-

cess mode: /dev/vme4l_a16d16, /dev/vme4l_a24d32,

/dev/vme4l_cr_csr, /dev/vme4l_a32d32_blt, etc.

Read/write operation on a given device is then mapped to

a read/write to the corresponding PCIe memory window,

which is translated by the FPGA bridge to a corresponding

VME bus access. The driver also supplies a kernel-level

interface to enable custom drivers development for VME

Slave devices.

The original TSI148 API used at CERN provides dual

userspace and kernel level interface, as is the case with the

new API developed by MEN. The dual interface makes it

possible to write VME device drivers using the kernel level

interface or develop userspace applications that take advan-

tage of the character devices and associated I/O control calls.

Despite the MEN and CERN interfaces being different, the

set of possible operations executed on the VME bus does not

change. This means the only adaptation we had to develop

as part of the CERN internal support project was a wrapper

module which translates the original TSI148 interface calls

to the new FPGA-based bridge interface. The final result is a

kernel module that is loaded on top of the MEN drivers. The

module provides the original TSI148 interface that can be

used by any previously developed application, and internally

calls functions exported by the A25 driver. Such solution

is very convenient for the users, as it allows them to keep

running their well-tested software without any modifications.

In case of any new FPGA bridge driver releases by MEN,

the CERN driver update operation is seamless as long as the

FPGA bridge interface remains unchanged.

CONCLUSIONS

The open source, FPGA-based implementation of the

PCIe-to-VME bridge solves the bridging problem for VME

Single Board Computers forever. Since now, any company

can take this design and make a custom SBC around it. For

places where VME is still actively used, this bridge provides

freedom to change among various Single Board Computers

at will without re-writing custom VME drivers and user

space applications. With this new PCIe-to-VME bridge, we

also aim at stimulating VME collaborations among research

institutes as now they can more easily re-use the VME Slave

boards together with their custom Linux drivers.

We would like to gather a community among people work-

ing with VME electronics to help us improve this newly

published bridge.

FUTURE WORK

The FPGA-based PCIe-to-VME bridge described in this

article is ready to be used in VME systems. In the process

of insourcing the design we have identified some places

in the VHDL code that could be improved in the future.

One of them would be to clean up the code and use some

Wishbone register generator (like wbgen2 [6]) to provide a

convenient and consistent method of accessing fields of the

configuration registers. Currently this is done with many

hardcoded indexes in various places of the code. We could

also foresee adding support for the fast data transfer modes

like 2eVME and 2eSST.

REFERENCES

[1] American National Standard for VME64, ANSI/VITA Std.

1.0-1994

[2] 2eSST, ANSI/VITA Std. 1.5-2003

[3] VME64 Extensions, ANSI/VITA Std. 1.1-1997

[4] PCI Express Base Specification, PCI-SIG Std. Revision 1.1

[5] PCIe-to-VME bridge project page and sources,

https://www.ohwr.org/projects/pcie-vme-bridge

[6] wbgen2: Wishbone slave generator

https://www.ohwr.org/projects/wishbone-gen

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUAPL03

TUAPL03
136

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology


