
CUSTOMIZATION OF MXCuBE 2 (Qt4) USING EPICS FOR A
BRAZILIAN SYNCHROTRON BEAMLINE

D.B. Beniz, Brazilian Synchrotron Light Laboratory, Campinas, Brazil

Abstract
After studying some alternatives for macromolecular

crystallography beamlines experiment control and had
considered the effort to create an in-house made solution,
LNLS decided to adopt MXCuBE [1]. Such decision was
made considering main technologies used to develop it,
based on Python, which is being largely used in our
laboratory, its basic support to EPICS (Experimental
Physics and Industrial Control System), the control
system adopted for the LNLS beamlines, and because of
its stability. Then, existing MXCuBE implementation has
been adapted to cover LNLS requirements, considering
that previously it was mainly ready to control systems
other than EPICS. Using basic MXCuBE engines, new
classes were created on devices abstraction layer, which
communicates to EPICS IOCs (Input/Output Controllers),
like AreaDetectors, MotorRecords among others. Py4Syn
[2] was employed at this abstraction layer, as well. New
GUI components were developed and some
enhancements were implemented. Now, MXCuBE has
been used on LNLS MX2 beamline since the end of 2016
with positive feedback from researchers. The adoption of
MXCube proved to be right, given its flexibility,
performance and the obtained results.

MOTIVATION
LNLS macromolecular crystallography beamline,

MX2, has been reformed to be the base for its
correspondent on Sirius, new Brazilian Synchrotron Light
Source. During it, software control systems were also
revised. EPICS was kept as the basic control system for
devices operation, and using that we looked for a better
GUI to offer a good experience for researches when
performing experiments on MX2. In the past, some GUI
solutions were tested on such beamline, like Blu-Ice [3]
and an in-house development based on CS-Studio [4], but
they were not totally well-succeeded.

Because MX2 coordinator, Ana C. M. Zeri‡, had
experienced the usage of MXCuBE on ESRF, she asked
software support group of LNLS to take a look at it as an
alternative, and then we started to customize it for our
environment.

ARCHITECTURE OVERVIEW
Main organization of MXCuBE Qt4 was kept

untouched; the basic support for EPICS was used but
modified in some parts to allow the usage of Py4Syn. As
other laboratories that contribute to MXCuBE
development do, we created new folders named LNLS on
layers that abstract hardware objects and their
configuration. This way, we could develop our own

Python classes with procedures performing operations
according to our equipment and necessities.

An overview of MXCuBE architecture we customized
to offer full experiment operations control for researchers
of MX2 beamline at LNLS is presented on Figure 1.

Figure 1: Overview of MXCuBE for LNLS Solution
Architecture

Electronic (Technical) Equipment
At lower level of control system are the typical

technical devices present in synchrotron beamlines. In
fact, they have their own controllers which receive
instructions, via serial (RS232/RS248) or Ethernet
connection, for example, and then command the
equipment. Some devices present in MX2 beamline of
LNLS are:

 Galil DMC-4183: motor controller
 Parker OEM750: motor controller
 Kollmorgen S300: motor controller (air bearing)
 Heidenhain MT 2501: optical encoder
 Keithley 6485: picoammeter
 Cryojet: temperature controller of cryogenic

cooling system
 Stanford SR570: low noise current preamplifier
 Dectris Pilatus 2M: CCD camera
 IDS GigE uEye: industrial camera (view sample)
 Stäubli CS8: robot controller (sample changer)

Logical (Abstraction) Layer
Over the devices controllers is the first abstraction of

them, build in EPICS, with correspondent IOCs

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA201

Experiment Control
THPHA201

1923

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

(Input/Output Controller) for each one of the devices.
Those devices of the same manufacturer and model share
the same IOC program, but run in individual instances.
Basically, a set of instructions to get information or to
send a command to devices is organized in those IOCs as
PVs (Process Variable), where each PV is a record, or
piece of data, with some attributes to format, configure or
simply return related information.

All PVs are broadcasted in the network via CA
protocol, in which subnet where CAS is connected they
are accessible.

The second abstraction level of those PVs is made by
Py4Syn, which offers a set of Python objects representing
each one of devices controlled by EPICS IOCs. Py4Syn
also implement a set of utility tools to perform scan of
motor positions while a counting detector is accumulating
information of beam intensity transmitted across a
photodiode, or to vary a goniometer angle while a CCD is
acquiring spectra images to analyse the x-ray diffraction
pattern produced by a crystal sample, for example. It also
allows a combination of motor movements, like a mesh of
two motors, and mathematic calculations based on the
measure of one or more detectors.

User Interface Layer
Finally, in the top layer of this architecture is the GUI.

The focus of this article is the adaptation of MXCuBE, a
graphical interface very stable and used by important
macromolecular crystallography beamlines in different
synchrotron light sources on Europe, e.g.

The version we adopted is based on PyQt4, which is a
library that encapsulate Qt4, via SIP, that allows C/C++
programs to be called inside Python scripts. Qt4 has an
easy framework to create graphical interfaces, offering
some widgets of components that facilitate interaction
between users and the operation the programs execute,
like input text boxes, labels, command buttons, tables,
graphics, images, etc. An utility of Qt4, called Qt
Designer, is used to produce an XML file with all
necessary information to generate a GUI, by simply
dragging and dropping widgets and configuring their
characteristics, like name, to be used by Python scripts to
bind procedures to them, text to display, size, position,
between others.

MXCuBE has a design operation mode which generates
an interface with all components that, together, allow the
researchers to perform experiments on a MX beamline,
like that in Figure 2.

Since all the components are in desired places, it is
necessary to program what is called “bricks” in
MXCuBE. Each brick is a basic graphic control element,
and could combine some components, from where
information and actions are received from users, and to
where processing results, alerts and error messages are
displayed. To produce the final interface, a set of bricks
are configured to control physical devices, so, some
instances of such programed bricks are running on a final
interface during execution mode. For example, a brick of

a motor contains the graphical components to receive
desired target position and to start or stop the movement,
and the logic binding it to a hardware object abstraction,
which is responsible to send commands to real motor. To
instantiate a set of motors it is just necessary to configure
them on an XML file. PyQt4 has a concept of signal-slot
communication between the graphical and logical layers,
and using it MXCuBE send information from bricks to
hardware objects.

Figure 2: MXCuBE main interface for MX2 beamline.

MXCuBE SOLUTION FOR MX2
It was necessary to create some EPICS IOCs, like one

for IDS uEye industrial camera, following AreaDetector
standards and using AravisGigE [5] driver. The result,
after encapsulate the treatment of image returned as an
array by such developed IOC in a Python class inside
hardware object layer of MXCuBE, is that showed in
Figure 2.

To bind such EPICS IOCs with Python scripts, inside
MXCuBE, we also used Py4Syn, inside HardwareObject
layer. When necessary, or when it presented a better
performance, we used native support to EPICS in
MXCuBE, implemented using PyEPICS library inside
HardwareRepository layer.

Figure 3: LNLS created widget (brick) to optimize beam
position.

Other original features, proposed by technicians of MX2

beamline, were also implemented. One of them is a
sequence of beam optimization, to be performed
automatically, based on some parameters, like initial and
final position of slits, step size, etc. The procedures are

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA201

THPHA201
1924

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

performed to optimize the energy, scanning the crystal
position and calculating energy result based on Bragg’s
Law, and to centralize the beam on two sets of slits,
scanning their positions, but using the predefined
horizontal and vertical gaps. A photodiode is used to
measure beam intensity. Such tool was created as a
widget, and the Figure 3 shows the final result.

A CBF viewer embedded in MXCuBE solution was also
implemented, using Python cbf [6] library developed by
Paul Scherrer Institute (PSI). A screenshot of final result
is showed in Figure 4.

Figure 4: CBF viewer embedded in MXCuBE.

Another example of LNLS implementation inside

MXCuBE is the monitoring of dead-time via Amptec
MCA (Multi-Channel Analyser), what is showed in Figure
5.

Figure 5: Amptek MCA dead-time

As a last example of original implementation on
MXCuBE solution used by MX2 beamline of LNLS, it
was implemented an automatic verification of CamServer
execution on Pilatus server. Using Xpra [7] tool and
wmctrl Linux command, at MXCuBE start it is verified if
CamServer is running on Pilatus server, and if Pilatus
EPICS IOC is connected to it, starting it via Xpra, that
remotely start GUI based applications, and at the end we
stop CamServer using Xpra and wmctrl command, that
send commands to X windows. It is displayed at Figure 6
how we can see the CamServer running remotely on
Pilatus server via Xpra on operation station where
MXCuBE is being executed. Such screen is saved
together CBF results on storage.

CONCLUSION AND NEXT STEPS
Since MXCuBE is being used by researchers of MX2

beamline, available to them since 2016’s end, we are
receiving good feedback from them.

Figure 6: CamServer remotely controlled via Xpra.

Next steps on our macromolecular crystallography

beamline, focusing of enhancements for Sirius, are:
 Conclude sample changer programming and

installation.
>Actions already in course, to program Stäubli

CS8 robot;
 Enable mesh scan on MXCuBE;
 Enable auto-analysis, at least one first approach,

on MXCuBE.
>Edna is being studied;

 Install ISPyB [8] and integrate it with MXCuBE;

REFERENCES

[1] Gabadinho, J. et al., 2010, “MXCuBE: a synchrotron
beamline control Environment Customized for
Macromolecular Crystallography Experiments”. J. of
Synchrotron Rad., V. 17, pp. 700-707.

[2] H. H. Slepicka et al., 2015, “Py4Syn: Python for
synchrotrons”. J. of Synchrotron Rad., V. 22, pp. 1182-
1189.

[3] T. M. McPhillips et al., 2002, “Blu-Ice and the Distributed
Control System: software for data acquisition and
instrument control at macromolecular crystallography
beamlines”. J. of Synchrotron Rad., V. 9, pp. 401-406.

[4] J.Hatje, M.Clausen et.al., "Control System Studio (CSS)",
ICALEPCS’07, Knoxville, USA, 2007, MOPB03.

[5] AravisGigE driver,
https://github.com/AravisProject/aravis

[6] cbf package,
https://github.com/paulscherrerinstitute/cbf

[7] Xpra, https://www.xpra.org
[8] ISPyB, http://www.esrf.eu/ispyb

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA201

Experiment Control
THPHA201

1925

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

