
PARALLEL EXECUTION OF SEQUENTIAL DATA ANALYSIS
MurariJ. F. J. , Klementiev,K.∗

Max IV Laboratory, Lund, Sweden

Abstract
The Parallel Execution of Sequential Data Analysis

(ParSeq) software has been developed to work on large data

sets of thousands spectra of a thousand points each. The

main goal of this tool is to perform spectroscopy analysis

without delays on the large amount of data that will be gen-

erated on Balder beamline at Max IV [1]. ParSeq was de-

veloped using Python and PyQt and can be operated via

scripts or graphical user interface (GUI). The pipeline is

consisted of nodes and transforms. Each node generally has

a common group of components: data manager (also serves

as legend), data combiner, metadata viewer, transform dia-

log, help panel and a plot window (from silx library [2]) as

main element. The transforms connect nodes, applying the

respective parameters in the active data. It is also possible to

create cross-data linear combinations (e.g. averaging, RMS

or PCA) and propagate them downstream. Calculations will

be done with parallel execution on GPU. The GUI is very

flexible and user-friendly, containing splitters, dock widgets,

colormaps and undo/redo options. The features mentioned

are missing in other analysis platforms, which justifies the

creation of ParSeq.

INTRODUCTION
ParSeq has been projected to perform data analysis on a

large amount of spectroscopy data through a downstream

pipeline. This paper aims to present the tool and the status

of the project, as well as describe the features implemented

and what software technologies were used.

MAIN WINDOW
ParSeq has a main window composed of transformation

nodes. Each node has a separated tab and defines which

stage of the pipeline the user is working on. The nodes have

a common group of components that will be detailed in next

section. Figure 1 shows an overview of the main window.

ParSeq can be operated both via GUI or via scripts, where

the user can define programmatically what is the data pro-

cessing pipeline wanted and what are the parameters for

each transform and for each spectrum. Processing pipelines

are Python modules imported by GUI or scripts and are

predefined for any analysis technique and therefore are (a)

ready to use and (b) extensible if required. The currently

implemented pipeline is only one: for X-ray Absorption

Spectroscopy.

All graphical elements were implemented using Python

and PyQt4 and the main plot window is from the silx library.

The initial layout was designed with Qt4 Designer program,

as shown in Fig. 2.

∗ juliano.murari@maxiv.lu.se

Figure 1: ParSeq Main Window.

Figure 2: Qt4 Designer layout of ParSeq.

Dockable Widgets
The node widgets are dockable and can be placed wher-

ever the user prefers, giving the flexibility to the user to de-

cide where to position the windows or to have them grouped

in tabs. ParSeq saves the current perspective of the widgets

in order to be able to restore it next time the program is

opened again.

Undo Redo Actions
ParSeq has implemented undo and redo options related

to the transform operations. These options allow the user to

revert one transform that was occasionally done with wrong

parameters, or even that the result was not the expected. If

one action is reverted (undo) it will then be available to be

reapplied (redo).

Splitters
Corner widgets of ParSeq are divided by splitter bars (qt-

Splitter widget) that can be resized by the user. Furthermore,

the splitters have a button to collapse/expand the corner wid-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA186

User Interfaces and User eXperience (UX)
THPHA186

1877

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



get. This way, the user can hide the sub-windows that are

not in use at the moment.

NODE STRUCTURE
The graphical elements that compose a node are described

bellow:

Data Manager
Data manager is a QtTree with a list of names representing

the data related to each spectrum. The list can be divided

in different groups, where is possible to drag and drop the

names between the groups.

A right click opens a context menu with options to interact

with the data. The selected names determine the active data,

that will be considered to apply transforms or options from

the context menu. Bellow are presented the options available

in the context menu:

• Add: add a new curve from a file. It will be inserted

on the current group.

• Remove: remove the selected curves.

• Create group: create a new group on the QtTree.

• Set a colormap: apply a colormap to the selected

curves, with a linear or logarithmic gradient (see Fig. 3).

Colormaps available are: temperature, viridis, plasma,

cool, copper, autumn, spring, summer, winter, brg, gnu-

plot and jet (from silx).

Figure 3: Colormap Dialog Window.

• Set line properties: apply a set of line properties to

the selected curves (see Fig. 4). The properties are:

– Color: full range of colors from matplotlib

ColorDialog.

– Symbol: circle, point, pixel, cross, x-cross, dia-

mond, square or none (from silx API).

– Width: value for line width.

– Style: no line, solid, dashed, dash-dot and dotted

(from silx API).

Figure 4: Line Properties Dialog Window.

• Average: combine the selected curves, averaging them

in a new curve.

The widget also serves as a legend. For each node there

are one or more columns representing the curves on the plot.

Each legend entry has a control element for attributing it to

left or right Y axis or for switching it off. There is also a

button to control all the curves of the group.

Regarding the functionality as legend, each button has

the color and the line from the curve. Through the context

menu the user can change these characteristics. Furthermore,

when more than one curve are selected, the user can apply

a colormap to change their colors following the colormap

gradient, as shown in Fig. 5.

Figure 5: Example of colormap with temperature gradient.

Data Combiner
The data combiner creates a linear combination (average

or RMS) or several linear combinations (for Principal Com-

ponent Analysis) and optionally can stop the propagation

of the contributing data at some downstream node in favor

of the combined data. This feature is useful, for example,

for averaging multi-element detector data when the quality

of the individual data can be visualized and assessed not

immediately but a few transforms downstream of the present

node.

Metadata iewer
Metadata viewer widget has the function to show what

are the metadata related to the selected curves. If more than

one curve are selected it shows only the metadata common

between them.

Transform Dialog
The transform dialog widget is where the parameters op-

tions are available. At this point each node has a specific set

of parameters. Each spectrum has, in general, its individual

values for these parameters. The result of the transform ap-

pears in the next node. The last node of the pipeline does

not have this widget.

Help Panel
Help panel widget is a space to present help text with

instructions and information about the current node and the

associated transform. It shows a rich text from html file.

V

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA186

THPHA186
1878

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)



Plot Window
Plot window widget from silx is the central and most

important element of the GUI. It is the widget that indeed

shows spectra, usually as XY graph. The advantage to use

the silx plot window is to have a lot of functionalities already

implemented, as for example, zooming, regions of interest

(ROI), grid, log scale.

Library silx provides an OpenGL backend which is faster

than matplotlib backend, mainly working with 1D curves.

It is an important aspect of performance, since we plan to

work with thousands of curves.

GPU PROCESSING
Planned for a later development stage, the most expensive

transforms will be computed in parallel on GPUs or multi-

core CPUs. The programming will be done in OpenCL [3].

The connection to ParSeq will be done in Python by means

of PyOpenCL. The early implementation of the transforms

will be done solely with numpy.

FUTURE WORK
ParSeq is a project under development and we are conti-

nously working on it. For the future we plan, besides the

GPU processing, to improve the handling of data files, and

to increase the number of formats supported (HDF, for ex-

ample). We are also working on the implementation and

integration of the transforms that will be available.

In the future ParSeq can be also very useful to run inte-

grated with the beamline control system for on-the-fly quality

checking.

CONCLUSION
The paper presented ParSeq and its features, as well as the

direction and the current status of the project. In conclusion,

ParSeq will be a very important and user-friendly software

tool for data analysis and visualization at Balder beamline.

ACKNOWLEDGEMENT
The authors would like to acknowledge everyone involved

in the project, specially the Controls and IT group (KITS)

and the Balder team.

REFERENCES
[1] K Klementiev, et al. The Balder Beamline at the MAX IV Labo-

ratory. Journal of Physics: Conference Series, 712(1):012023,

2016.

[2] Solé, V. A., et al., “silx-kit: Scientific Library for eXperimen-

talists”, Release 0.5.0 - 2017/05/12. http://www.silx.org/

[3] John E. Stone, David Gohara, and Guochun Shi. Opencl: A

parallel programming standard for heterogeneous computing

systems. IEEE Des. Test, 12(3):66–73, May 2010.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA186

User Interfaces and User eXperience (UX)
THPHA186

1879

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


