
COMMON STANDARDS FOR JavaFX GUI DEVELOPMENT
AND ITS APPLICATION TO THE RENOVATION OF THE
CERN BEAM INSTRUMENTATION SOFTWARE PORTAL

AND DELIVERY MECHANISM
Iason-Dimitrios Rodis and Athanasios Topaloudis

CERN, Geneva, Switzerland

Abstract
Until recently, Java GUI development in the CERN Beam

Instrumentation Group has followed an ad-hoc approach
despite several attempts to provide frameworks and coding
standards. Triggered by the deprecation of Java’s Swing
toolkit, the JavaFX toolkit has been adopted for the cre-
ation of new GUIs, and is foreseen for future migration of
Swing-based GUIs. To increase homogeneity and encour-
age modular coding of JavaFX GUIs, libraries have been
developed to standardise accelerator context selection, pro-
vide inter-component GUI communication and optimise data
streaming between the control system andmodules that make
up an expert GUI. This paper describes how this has allowed
the use of model-view-controller techniques and naming
conventions via Maven archetypes. It also details the mod-
ernisation of the software delivery process and subsequent
renovation of the software portal. Finally, the paper outlines
a vision to extend the principles applied to this Java GUI
development for future Python-based developments.

INTRODUCTION
The CERN Beam Instrumentation Group (BI) is responsi-

ble for studying, designing, building and maintaining all the
instruments that allow the observation of the particle beams
and their related parameters in the CERN accelerator com-
plex [1]. The BI Software Section provides software neces-
sary to develop, test, diagnose andmaintain such instruments
including expert graphical interfaces (GUI) implemented in
Java. The main GUI clients are hardware specialists respon-
sible for the instruments, along with a few operators and
accelerator physicists who require additional status and con-
trol beyond that provided by operational applications. Such
clients benefit from signal visualisation, parameter setting,
error diagnostics, calibration, data post processing, etc. [2]

Over the past few years, there has been an increase in de-
mand to have platform independent applications that would
be able to operate on both the Unix and Windows operating
system. Java fulfils this requirement and hence was stan-
dardised at CERN for GUI development in the accelerator
sector.
Initially, development of such applications was more ad-

hoc and based upon the Java Swing toolkit. However, as
the complexity and number of applications grew, so did the
necessity of standardising the development process through
the use of conventions and libraries [3].

ADDRESSING THE PROBLEM
There are many factors that determine the need for new

expert GUIs, such as the type of instrument, the acquisition
electronics, as well as the type of diagnostics to be performed.
Specifications for a new system are therefore often particular
to that system and cannot be fulfilled with static GUIs and a
fixed list of options.

Functionality reviews on current expert GUIs show that a
common, generic and modular JavaFX design is an effective
means of making reusable and maintainable GUI compo-
nents. This standardises and facilitates the development
process of a Java project. As a result, despite the different
software requirements, the similarity in their overall struc-
ture allows the applications to be built based on common
JavaFX standards. Additionally, the use of common conven-
tions, graphical components and libraries increase software
quality, as well as speeding up the development process.

COMMON STANDARDS
The main goal of the adoption of common standards is

to facilitate GUI development and maintenance as well as
to increase its homogeneity. In addition, it encourages the
use of a modular architecture, with specialised libraries that
perform common tasks. Typical examples of such tasks
are the: inter-component GUI communication, optimised
data streaming between the control system and GUImodules,
accelerator context selection (the categorisation of the beams
of particles in the accelerators).

Maven Archetypes
In order to help the developers use the new common stan-

dards, JavaFX template applications can be created. These
provide a clear structure, documentation and demo examples
of the aforementioned libraries. Such skeleton applications
are generated based on Maven archetypes and aim to es-
tablish a common modular architecture for all GUIs being
developed.
In short, an Archetype is a Maven project templating

toolkit. It is defined as an original pattern or model from
which all other things of the same kind are made. Archetypes
help authors create Maven project templates for users, and
provide users with the means to generate parameterised ver-
sions of those project templates [4].
The use of such a powerful templating mechanism facil-

itates the enforcement of the standards while accelerating
GUI development with working, entry-point projects.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA182

User Interfaces and User eXperience (UX)
THPHA182

1861

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Architecture
Following the structure imposed by the Maven archetypes,

developers are able to structure their project using a variation
of the Model-View-Controller (MVC) Pattern, called Model-
View-Presenter (MVP) [5].

The MVC pattern is the oldest and most popular when
it comes in GUI modelling. Using the pattern facilitates
the division of the domain code, which deals with domain-
specific data and business rules, and the presentation code,
which deals with the manipulation of user interface widgets.
TheMVC pattern consists of three components: model, view,
and controller. Figure 1 shows a pictorial view of the MVC
components and their interactions.

Figure 1: MVC Components and interactions.

In MVC, the model contains the domain objects that de-
scribe the real world problems. The view consists of the
presentation objects that compose the visual GUI elements.
Finally, the controller accepts user inputs and handles them
appropriately connecting the view with the model.

InmodernGUIs, widget-based architectures are becoming
more and more popular. These widgets combine the func-
tions of the view and controller into one. They also support
data binding, which helps keep the view and model in sync
with fewer lines of code. To benefit from such functionality,
we adopted a widget-based architecture in our archetypes.
Hence, we defined JavaFX TabViews with their own unique
controller and view and, most of the time, their own model.
Each widget is able to run as a standalone application, as
well as be part of a more complex programme (in its own
tab for example).

Dependency Management & Deployment
Currently, we use Maven as our deployment strategy.

Maven is a "build management tool” that takes care of tasks
required to build a project. Source code compilation, packag-
ing, (pre/post) processing, java classpath managing to name
a few.
Furthermore, Maven manages the dependencies of a

project, automatically. This is achieved by declaring the
needed libraries in its POM1 file enabling Maven to locate
1 Contains information about the project and configuration details used by
Maven [6]

them and their dependencies and import them in its repos-
itory system. Maven can provide an arbitrary number of
repositories, where it can fetch the declared libraries. It of-
fers developers the possibility to specify local repositories
which can be used internally in the team and not be publicly
available to others, thus allowing them to control and man-
age changes. We benefit from such functionality by having
local internal repositories cached.

The structure of the POM file and Maven’s inheritance of
configuration and dependencies facilitates the development
process. Since the included libraries also contain a POM
file, their dependencies can also be identified and fetched.
As a result, it is sufficient to group all common dependencies
in the POM file of a “parent” project that will be propagated
to all descendants by simply including the parent as their
dependency.

We have therefore defined multiple parent projects based
on the different use-cases intended for our GUIs. The re-
sulting dependency set is compatible with CERN Control
standards [7] as the general GUI components that were de-
veloped for JavaFX are used in our archetype programmes
(Fig. 2). Another set of dependencies consists of libraries
that aim to standardise accelerator context selection (Timing-
Pane), provide inter-component GUI communication (Event-
Bus) and optimise data streaming (CommunicationService)
between the control system and GUI modules.
As a result, a new project only needs a POM file that

inherits from the parent POM file in order to have all the
necessary dependencies, tools and project configurations
that compose the development lifecycle. This structure not
only standardises the GUI development environment but
accelerates and simplifies it as well.

Figure 2: JavaFX Skeleton application based on standard
CERN control system GUI components.

Our deployment strategy does not implement any ver-
sioning of a given JavaFX application maintaining only a
“Release Candidate” and “Operational” version at all times.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA182

THPHA182
1862

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)



Figure 3: BI Software Portal Search functionality.

Typically, they are deployed by an ANT2 [8] script and
their executable java files can be found under two different
folders, each containing all the necessary dependencies spec-
ified in the application. Both versions can be launched either
through a Web service, or from a dedicated “Application
Launcher” [3].

Naming Conventions
In our effort to standardise the dependency management

and deployment of our expert GUIs, we found it useful to use
the same coding style and naming conventions. By adopting
naming conventions, programs become more comprehensi-
ble and easier to maintain. They can also give information
about the function of the identifier, whether it is a constant,
package, or a class, which can be helpful in understanding
the code. Lastly, naming conventions enable us to develop
and use libraries that can inspect classes, interfaces, fields
and methods at runtime, without knowing the names of the
classes, methods etc. at compile time using Java Reflec-
tion [9].

RENOVATION OF THE BEAM
INSTRUMENTATION SOFTWARE

PORTAL
The Beams Instrumentation (BI) Software Portal is a Web

application that aims to enhance homogeneity, standard-
isation and user experience for all beam instrumentation
software products. Not only does it comply with new soft-
ware standards but has been developed in such a way as to
benefit from them, in order to automate functionalities such
as documentation, GUI launching etc. Its main purpose is
to replace old and outdated software tools, combining them
into one product, having a single point of reference for differ-
ent services. Three existing software services that are being
upgraded are:

2 Software tool for automating software build processes

1. ApplicationLauncher - a software tool that classifies,
describes and starts the expert GUIs for beam instru-
mentation. It uses Java Web-start technology and ex-
tends Java’s JNLP format. Furthermore, it standardises
the configuration of the applications, adds a level of
security and makes execution platform independent.

2. LHC Instrumentation Documentation Software
(LIDS) - a Web service that aims to document realtime
software that controls instruments developed for beam
instrumentation in the CERN accelerator complex.

3. Webpages - such as:
• Useful links: a Web service that provides key
functionalities such as:
– The launch of the “Navigator” for deployed

real-time FESA (Front-End Software Archi-
tecture) classes running the instruments of
the accelerator complex [10].

– List of widely used links.
• Sharepoint page: whose major functionalities are:

– Housing a document server for papers, meet-
ing notes, images, etc.

– Housing the Wiki for developers.
– Maintaining a list of widely used links.

Architecture
The software portal Web application uses modern Web

development standards. With the extensive experience and
expertise available for development in Java, a Java-based
approach was considered as the most suitable.

The technologies used for the application are based on the
JHipster [11] stack. JHipster is a development platform that
generates, develops and deploys Spring Boot and Angular
Web applications. The goal is the rapid generation of a
complete and modern Web application unifying:

• A high-performance and robust Java stack on the server
side with Spring Boot.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA182

User Interfaces and User eXperience (UX)
THPHA182

1863

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



• A sleek, modern, mobile-friendly front-end with An-
gularJS and Bootstrap.

• A powerful workflow to build an application with Yeo-
man, Webpack/Gulp and Maven.

Functionality
The main goal of the BI Software Portal is to unify all the

software tools and documentation produced into one, user-
friendly application. Integrating CERN’s authentication ser-
vices enables effortless user identification and classification.
Therefore, clients varying from hardware experts and opera-
tors to developers, are able to login with their CERN account
and access the multiple expert GUIs, documentation, wiki
and useful links. Additionally, they have the flexibility to run
search queries in order to retrieve information they are seek-
ing. For that purpose, the Portal is using ElasticSearch [12],
a search and analytics engine, that allows searching and fil-
tering on multiple fields such as the name of the expert GUI,
its developer, the instrument, or the FESA class (Fig. 3).
Moreover, the Portal provides personalisation function-

ality through a dashboard page, which allows users to cus-
tomise it according to their needs. They are able to select
expert GUIs as favourites, and have a list of their most re-
cently visited applications (Fig. 4).

Figure 4: Dashboard personalisation.

Finally, the BI Portal allows the developers to deploy and
configure their Java applications. Following the aforemen-
tioned standards and naming conventions, once an expert
GUI is created, the Web application can automatically re-
trieve details and add them to the application, such as the
links of the remote repository location, the issue manage-
ment location, and the README file.

Availability
It is essential that the expert GUIs are constantly available

for the hardware specialists to support operations. Thus, an
“offline mode” will be provided, in case of server failure.
The Web application server will frequently cache the .jnlp
files, responsible for running the applications, to the CERN

network file system (NFS), a guaranteed service. The offline
mode will then be able to continue launching the applica-
tions until the issue with the online service is identified and
resolved.

CONCLUSION AND FUTUREWORK
Although analysing and improving the quality of software

is essential, this is often time consuming. In order to effi-
ciently deal with any issues, the software design needs to be
kept backwards-compatible and up to date. The programs
also need to be structured according to CERN common stan-
dards, to ensure they are always maintainable, readable and
modular.
In this paper, we have provided a brief overview of our

common development standards and the logic for adopting
them. We have also presented how their application was
essential for the renovation of the CERN Beam Instrumenta-
tion Software Portal and Delivery Mechanism.
Our future work will focus on the optimisation of the ar-

chitecture’s performance and the extension of the current
principles applied to the Java GUI development for future
Python-based developments. In addition, we aim to pro-
vide GUI editing functionality that will give the opportunity
to create new GUIs based on the components of existing
ones, exploiting the modular architecture imposed by our
archetypes.

REFERENCES
[1] https://be-dep-bi.web.cern.ch/

[2] S. Bart Pedersen, S. Bozyigit, and S. Jackson, “Java Ex-
pert GUI Framework for CERN’s Beam Instrumentation
Systems”, in Proc. ICALEPCS’11, Grenoble, France, paper
WEPKS027.

[3] P. Karlsson and S. Jackson, “The introduction of hierarchical
structure and application security to Java Web Start Develop-
ment”, in Proc. ICALEPCS’05, Geneva Switzerland, paper
O4_008.

[4] Maven: https://maven.apache.org/guides/
introduction/introduction-to-archetypes.html

[5] Kishori Sharan, “Learn JavaFX 8: Building User Experience
and Interfaces with Java 8”, pp.420-422.

[6] POM, https://maven.apache.org/pom.html

[7] G. Kruk, O. Alves, L. Molinari, and E. Roux, “Best Practices
for Efficient Development of JavaFXApplications”, presented
at ICALEPCS’17, Barcelona, Spain, paper THAPL02.

[8] ANT, http://ant.apache.org

[9] Java Reflection, https://docs.oracle.com/javase/
tutorial/reflect/index.html

[10] M. Arruat et al., “Front-End Software Architecture”, in Proc.
ICALEPCS’07, Knoxville, TN, USA, paper WOPA04.

[11] JHipster, http://www.jhipster.tech

[12] Elasticsearch, https://www.elastic.co/products/
elasticsearch

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA182

THPHA182
1864

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)


