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Abstract
Accelerator control software often has to handle multi-

dimensional data of physical quantities when aggregating
readings from multiple devices (e.g. the reading of an orbit
in the LHC). When storing such data as nested hashtables or
lists, the ability to do structural operations or calculations
along an arbitrary dimensions is hampered. Tensorics is a
Java library that provides a solution to these problems. A
Tensor is an n-dimensional data structure, and both structural
(e.g. extraction) and mathematical operations are possible
along any dimension. Any Java class or interface can serve as
a dimension, with coordinates being instances of a dimension
class. This contribution will elaborate on the design and the
functionality of the Tensorics library and highlight existing
use cases in operational LHC control software, e.g. the
LHC luminosity server or the LHC chromaticity correction
application.

INTRODUCTION
A common need in applications that manipulate numeri-

cal data is to organize them in data structures which allow
easy transformations and calculations. This paper describes
the tensorics [1] library for the Java programming language
which provides several, complementary concepts to ease
such tasks. Despite the libraries name is derived from "ten-
sor", it contains several additional concepts which comple-
ment each other. The features are designed to work smoothly
together, but each of them can of course also be used stand-
alone. In the following sections, we give a short overview
on the different concepts, together with some explanatory
code examples.

TENSORS
The name “Tensorics” is derived from “Tensor”. Loosely

speaking, a tensor in mathematics is a multidimensional
data structure, whose dimensionality is given by the number
of indices. A tensor of dimensionality N contains a value
for each N-tuple of index values. Tensors in mathematics
are usually denoted by noting their elements with a full set
of indices. E.g. an element of a 3-dimensional tensor A
would be denoted as ai jk . Each index (i, j, k) can potentially
have its own range (e.g. 1 <= i <= Mi , 1 <= j <= Mj ,
1 <= k <= Mk).

Another way to see this is that a tensor has a value for
each point in an N-dimensional integer space. In the above
notation a dimension is identified by the position of the re-
spective index, and the coordinate in that dimension is given
by the value of the index. These mathematical concepts are
extremely useful, especially when it comes to operations on

such tensors (as we see in later sections). Therefore, ten-
sorics borrows many concepts from mathematics. At the
same time it translates them into the programming language
in a way that is aimed to form a powerful data structures
which encourages readable code as much as possible and
helps avoiding confusion and mistakes. For this reason, we
use the word “Tensor” in an even sloppier manner.
The main particularity of a tensorics tensor is that a di-

mension is not identified by the position of the index, but
by a java type (class). Instances of the respective type we
denote as coordinates. A point within the N-dimensional
coordinate space is then defined by a set of objects (instances
of coordinate classes), of which each type must be exactly
once. This key concept allows easier and less error-prone
usage (because the order of the coordinates/indices is not
relevant) and still leads to readable code.
A tensorics tensor has one type parameter, the type of

the values it contains, usually denoted as <V>. Therefore,
the tensor data structure can be used as container for any
Java type. However, some operations on the tensors will
be only possible for certain value types (e.g. mathematical
operations).

An Example
Since tensorics concepts and syntax are best explained in

a practical walk-through, we will use the following example
throughout the subsequent sections:

Consider weather analysis: A data set consists of weather
data from different cities and times. The class City and Time
are defined and some constants are instantiated. Temperature
values are stored in a tensor of doubles, for example:

Listing 1: Constants for examples.

City SF = City.ofName("San Francisco");
City LA = City.ofName("Los Angeles");

Time T1 = Time.of("2017-01-01 15:00");
Time T2 = Time.of("2017-01-02 15:00");

Tensor<Double> degrees;
/* creation omitted */

Accessing Values Assuming the above constants, we
can then simply get temperature values from the tensor:

Listing 2: Accessing Tensor Values.

Double t = degrees.get(T1, SF);

As visible here, this looks very similar to getting values
from a map, with the following important differences:
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• The get method of a tensor accepts N arguments, one
for each dimension.

• The get method of a tensor never returns null. It will
throw an appropriate exception in case there is no value
available in the tensor for the given set of coordinates.

In general, it shall be noted that all methods within the ten-
sorics library are designed to fail fast. This is particularly
important because tensorics, due to its flexible API, cannot
rely on compile-time checks in many cases and thus some
errors only appear at runtime.

The set of N coordinates is called a position in tensorics.
Thus, the code from Listing 2 is equivalent to

Listing 3: Accessing Tensor Values through position.

Position position = Position.of(T1, SF);
Double t = degrees.get(position);

Main Entry Point The interfaces of tensorics objects
is kept very slim and usually only provide the absolutely
necessary methods. All the other operations on these objects
is based on static methods operating on them. Themain entry
point for these methods (containing all the methods which
are not specific to certain value types) is the class Tensorics.
This class contains also, for example, a delegation method
to the Position.of() method:

Listing 4: Alternate factory method for position.

Position position = Tensorics.at(T1, SF);
/* with static import: */
Position position = at(T1, SF);

Using a static import for this, allows concise code which
will be particularly important when creating tensors.

Note: In all the following code examples, we assume
that, whenever there is a plain method call, then it is a static
method from the Tensorics class (or in other words that
Tensorics.* is imported statically).

Creating Tensors All currently available implementa-
tions of tensors are immutable. The usual way to create
them is through builders. For example, to create our temper-
ature tensor and put 4 values into it, we would have to do
something like:

Listing 5: Building a tensor.

Tensor<Double> degrees =
builder(City.class, Time.class)

.put(at(SF, T1), 12.5)

.put(at(SF, T2), 14.2)

.put(at(LA, T1), 17.5)

.put(at(LA, T2), 19.2)

.build();

Again, the syntax is very similar to building an immutable
map. And indeed this is another way how a tensorics tensor
can be seen: As a map from position to a value - and it can
be transformed into one:

Listing 6: Tensor as map.

Map<Position, Double> degreesMap =
mapFrom(degrees);

Scalar A tensor can have zero dimensions. This partic-
ular tensor we denote as scalar in tensorics. It has exactly
one value at the position Position.empty(). A scalar can
simply be created using the static factory method

Listing 7: Creating a scalar.

Scalar<Double> scalar = scalarOf(2.5);

Structural Operations
Up to now, we were simply using a tensor as a kind-of map

with combined keys. However, the real power is unleashed
only when it comes to transformations. For this it is useful
to understand on additional concept:

Shape Just like a map has its set of keys, a tensorics
tensor has a shape. It basically describes the structure of the
tensor, without its values. Basically it contains the following
information:

• The dimensions of the tensor (e.g. Time.class and
City.class in the above example) and

• The available positions in the tensor.

The shape can be retrieved from the tensor and used for our
example like the following:

Listing 8: Shape of a tensor.

Shape shape = degrees.shape();

Set<Class<?>> dims = shape.dimensionSet();
/* Contains Time.class and City.class */

int dim = shape.dimensionality();
/* Will be 2 */

Set<Position> poss = shape.positionSet();
/* contains the 4 positions */

int size = shape.size();
/* Will be 4 */

Extracting Subtensors One very common structural
operation is extracting sub-tensors from a tensor:

Listing 9: Extracting Subtensors.

Tensor<Double> sfDegrees =
from(degrees).extract(SF);

This will result in a 1-dimensional tensor, only containing
coordinates of type Time. The complementary operation to
this is called merging tensors.

Note: while in the getmethod, the number of coordinates
always has to exactly match the dimensionality of the tensor
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(otherwise themethodwill throw), the extractmethod takes
any subset of the dimensions as argument; the get method
returns the values of the tensor, while the extract method
returns again a tensor. This implies that if coordinates for
all dimensions are provided as arguments for the extract
method, then a zero-dimensional tensor is returned. The
returned tensor can be empty in case no elements exist at
the extracted coordinates.

Mathematical Operations
One important motivation to use tensors is of course to

have simple and intuitive ways to perform mathematical
operations on them. While the structural operations - as
described up to now - can be performed on tensors of any
value types, it is clear that mathematical operations can be
only done with tensor values of particular types.

Mathematical Structures Tensorics does not strictly
restrict the types on which mathematical operations can be
performed, but provides an extension mechanism through
which - in principle - the mathematical capabilities can be
added for any value type. In practice this makes only sense
(and is only necessary) for a limited number of value types.
The extension mechanism requires to provide (with a, b, c
being tensor values):

• Two binary operations, addition (+) and multiplication
(*) with the following properties:

– both, + and * are associative: a + (b + c) = (a +
b) + c; a ∗ (b ∗ c) = (a ∗ b) ∗ c.

– both, + and * have an identity element (Called ’0’
for +, ’1’ for *): a + 0 = a; a ∗ 1 = a.

– both, + and * have an inverse element (Called ’-a’
for +, ’1/a’ for *): a + (−a) = 0; a ∗ 1/a = 1.

– both, + and * are commutative: a + b = b + a;
a ∗ b = b ∗ a.

– * is distributive over +: a ∗ (b+ c) = a ∗ b+ a ∗ c.
Mathematically speaking, the two operations form the
algebraic structure of a field [2] over the tensor values
<V>.

• Two additional binary operations: Power (ab) and Root
( b
√

a).
• A conversion function of the tensor values to and from
doubles.

If these operations are provided to generic support classes
of tensorics, then all the manipulations based in the fol-
lowing will be available by inheriting from these support
classes. The biggest advantage of the approach used in ten-
sorics for defining a field (and using external methods for
calculations - not methods of the field elements) is that it
(technically) does not impose any constraints on the value
type and thus avoids e.g. wrapper objects as necessary in the
field-implementations of other math libraries (e.g. Apache
Commons Math [3]).

Out of the box, tensorics currently provides an implemen-
tation of these requirements for doubles. To simplify these

very frequently required operations, it provides also a con-
venience class (TensoricsDoubles) with static delegation
methods to the support classes. Such convenience will not
be available out of the box for custom value types, but can
be easily added in a similar way. Whenever there is trailing
method call in the following examples, we will assume that
it is a static method from the class TensoricDoubles.

Unary Operations Next to operations on tensors, the
support classes also provide convenience operations for iter-
ables. For example:

Listing 10: Unary Operations on Iterables and Tensors.

Iterable<Double> v = Arrays.asList(1.0, 2.0);
Iterable<Double> negv = negativeOf(v);
Double vsize = sizeOf(v);

Tensor<Double> t; /* creation omitted */
Tensor<Double> negt = negativeOf(t);
Double tsize = sizeOf(t);

Basic Statistics Some very simple statistical methods
are provided out of the box. For iterables, the results are
simply of type of the elements of the iterable:

Listing 11: Iterable statistics.

Iterable<Double> v = Arrays.asList(1.0, 2.0);
Double avg = averageOf(v);
Double sum = sumOf(v);
Double rms = rmsOf(v);

On the other hand, for tensors the application of statistical
operations is usually done only in one dimension. This
corresponds to a reduction of the tensor by one dimension.
The provided fluent API reflects this (continuing our example
from before):

Listing 12: Tensor statistics.

/* All these return Tensor<Double>: */
reduce(degrees).byAveragingOver(Time.class);
reduce(degrees).byRmsOver(Time.class);
reduce(degrees).bySummingOver(Time.class);

Binary Operations Calculating of operations between
two tensors, finally makes the most use. These operations all
start using the TensoricDoubles.calculate(...) method:

Listing 13: Tensor statistics.

/* degrees and offset are Tensor<Double> */
calculate(degrees).plus(offset);
calculate(degrees).minus(offset);
calculate(degrees).elementTimes(other);
calculate(degrees).elementDividedBy(other);
/* All these return Tensor<Double> */

Here both, the left and right operands are assumed to be
tensors. However, bare values are also supported on both
sides and will be implicitly be converted to scalars. The
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four above-mentioned operations are the simplest ones, as
they are based on element wise operations: Each element
in the left tensor only requires the corresponding element
in the right tensor to produce the corresponding element in
the resulting tensor. However, this needs some other consid-
erations: What happens if the two operands have different
shapes? This problem can be treated in two stages, which
are called broadcasting and reshaping in tensorics. They are
explained in the following two sections. Tensorics has a very
modular way to treat such cases: Different strategies can be
used (and even implemented) by the user in special cases. If
nothing is specified, a sensitive default will be used.

Reshaping This is the simpler of the two possible shape-
inconsistencies: It means that both tensors in question have
the same dimensions, but they have values for different posi-
tions (e.g. one has less entries than the other). The default
behaviour for this case is, that the resulting tensor will have
only values for the positions, which are contained in each of
the tensor (The intersection of the position set).

Broadcasting The term broadcasting is borrowed from
the python library numpy [4]. While the underlaying prin-
ciple is very similar to the numpy one, there are several
essential difference which comes from the fact that numpy
uses multi-dimensional arrays with integer indices, while
tensorics identifies its dimensions by classes: The default
broadcasting strategy in tensorics broadcasts all dimensions
which are not available in one tensor to the shape of the
second tensor. In other words, a dimension which is not
present in one, will be added to the other tensor and all co-
ordinate values of the respective dimension will potentially
be combined with all the positions of the other tensor. For
example:

Listing 14: Tensor broadcasting.

Tensor<Double> temps = builder(Time.class)
.put(at(T1), 10.5)
.put(at(T2), 12.2).build();

Tensor<Double> offsets = builder(City.class)
.put(at(SF), 2.0)
.put(at(LA), 7.0).build();

Tensor<Double> result =
calculate(temps).elementTimes(factors);

/* Will contain 4 positions:
(SF, T1), (SF, T2), (LA, T1), (LA, T2)*/

The result will be exactly the same tensor as constructed
in Listing 5. When performing binary operations, the two
operands are first both broadcasted and then reshaped. This
ensures that the dimensions are correct and then that all the
relevant elements operate on their corresponding partners.

Inner Product This very particular multiplication of
two tensors is basically the generalization of the matrix mul-
tiplication. The syntax is as simple as it can be:

Listing 15: Inner product syntax.

calculate(degrees).times(other);

To have this yield the expected results, co- and contra-variant
dimensions have to be distinguished. In tensorics, this dis-
tinction is achieved by the following mechanism: By default,
coordinates are assumed to be contravariant. Covariant co-
ordinates are forced to inherit from the class Covariant<C>,
where the generic parameter <C> is the type of the corre-
sponding contravariant coordinate. Detailed information
about this can be found in the tensorics source code docu-
mentation [5].

PHYSICAL QUANTITIES AND UNITS
Another very common problem in scientific applications

is the proper treatment of units. At the current stage, ten-
sorics currently uses internally an external library for this
purpose (JScience [6]). However, as this library is not ac-
tively maintained anymore, it is foreseen to replace this
implementation either by a different library or an internal
implementation of physical quantities.
For this reason, tensorics already provides its own ab-

straction of units. A physical unit is represented by the
class Unit and a value-unit pair is represented by the class
QuantifiedValue. Factory methods for quantified values
are available in the Tensorics class. Convenience over-
rides are provided which support both tensorics internal unit
objects and JScience instances of units. Operations are avail-
able in the support classes for the corresponding value types,
like for doubles e.g. in the class TensoricDoubles. With
this, operations like the following are possible:

Listing 16: Quantities.

QuantifiedValue<Double> distance =
Tensorics.quantityOf(10.0, SI.METER);

QuantifiedValue<Double> time =
Tensorics.quantityOf(5.0, SI.SECOND);

QuantifiedValue<Double> speed =
calculate(distance).dividedBy(time);

/* results in 2 m/s */
Double value = speed.value(); // 2.0
Unit unit = speed.unit(); // m/s

Also support methods to work with tensors of quantified
values are provided, e.g.:

Listing 17: Tensors of Quantities.

Tensor<QuantifiedValue<Double>> measurement;
Tensor<QuantifiedValue<Double>> reference;
/* construction omitted */

Tensor<QuantifiedValue<Double>> difference =
calculate(measurement).minus(reference);

Error and Validity Propagation
Especially when using tensors for measured values, it is

important to understand the errors after a series of calcula-
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tions. Further, it is can be that individual points in a tensor
contain invalid data. It then makes no sense to do calcula-
tions with them. Tensorics provides dedicated mechanisms
for this cases. The QuantifiedValues contain two addi-
tional fields: a (boolean) validity flag and an optional value
for an error (uncertainty). All the operations on quantified
values (and on tensors of quantified values) take this fields
into account. The exact behavior can again be configured by
the use of explicit strategies. The defaults are:

• If an invalid value is used in a calculation, then the
resulting value will be invalid.

• The values involved in the calculations will be treated
as independent variables and the error is propagated to
the resulting value accordingly [7].

Comparisons between quantities take into account their
associated errors assuming Gaussian statistics. The confi-
dence level is 95% unless specified otherwise. This allows
to conveniently check if a quantity is significantly less, equal,
or greater than another. For example, 90±1m is significantly
less than 100 ± 10m at a confidence level of 68% but not at
95%.

Listing 18: Comparison of Quantities.

QuantifiedValue<Double> q90pm1 =
quantityOf(90.0, METER).withError(1.0);

QuantifiedValue<Double> q100pm10 =
quantityOf(100.0, METER).withError(10.0);

/* false at 95% confidence (default): */
testIf(q90pm1).isLessThan(q100pm10);

/* true at 68% confidence: */
with(confidenceLevelOf(0.68))

.testIf(q90pm1).isLessThan(q100pm10);

TENSORBACKED DOMAIN OBJECTS
While working with tensors gives all the flexibility of

transformations and calculations, very often it is desirable
to give more meaning to objects. Usually one would cre-
ate dedicated domain objects in these cases. However, this
would mean giving up all the convenient support meth-
ods. To combine the best of both approaches, tensorics
provides a built-in mechanism for creating domain objects
which wrap tensors inside and allow almost the same calcu-
lations and transformations as plain tensors. These objects
are called Tensorbackeds and can be defined by the user
as required. The simplest way to do so is to inherit from
AbstractTensorbacked. An important property of tensor-
backed objects is that each of them has a fixed set of dimen-
sions, which are defined through the dedicated annotation
@Dimensions. For example, if one would like to define some
domain object that contains temperatures, one could do so
by

Listing 19: Tensorbacked definition.

@Dimensions({Time.class, City.class})

public class TemperatureMap
extends AbstractTensorbacked<Double> {
/* empty (except a constructor) */

}

Instances of these classes can then be created using simply an
existing tensor or a builder. Calculations can be performed
like with bare tensors.

Listing 20: Tensorbacked Usage.

TemperatureMap measured = Tensorics
.construct(TemperatureMap.class)
.from(degrees);

TemperatureMap reference = Tensorics
.builderFor(TemperatureMap.class)
.put(at(SF, T1), 10.0)
.build();

TemperatureMap diff = DoubleTensorics
.calculate(measured).minus(reference);

When using a builder, the dimensions do not have to be given
explicitly, as they are already defined through the annotation.

EXPRESSION LANGUAGE
All the examples in the previous sections described di-

rectly Java executable code. In addition to this, tensorics
provides a Java internal domain specific language (DSL) to
only describe calculation steps using the same operations
as described before. This DSL does not directly execute the
calculations, but instead creates an expression tree, which
can be evaluated (resolved) in a separate step. Since these
expressions can be resolved in different contexts, this can
e.g. be used for subscription based online evaluation (e.g.
processing data from devices) or processing logged data.
This expression language is one of the cornerstones of a
recently developed online analysis framework. More details
can be found in the corresponding publication [8].

APPLICATIONS
The tensorics library became essential for several applica-

tions used to control CERN accelerators. For example, the
LHC Luminosity Server [9] heavily uses tensorics for all
its internal data storage and processing, in particular all the
capabilities of tensors and quantified values. The same is
true for the applications that control chromaticity [10] and
coupling [11] of the LHC. The third intensive use of the
package was described within [12] while treating on compu-
tations regarding reproducibility and stability of the beam
orbit in the LHC.
The expression language was driven big steps further by

the need of the recently developed injection diagnostics ap-
plication for the LHC [13]. Together with the streaming
pool library [14], it was generalized into a powerful analysis
framework.

SUMMARY AND OUTLOOK
The tensorics library evolved during the past few years

from an experimental prototype to a general purpose library

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA177

THPHA177
1846

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



which is used in production within several applications at
CERN.

The essential features, together with code examples have
been introduced in the sections of this papers: The usage
of Tensors, quantities and tensorbacked objects. For a more
detailed explanations of the expressions DSL we refer to a
dedicated paper [8].
The tensorics library is available as open source under

Apache License 2.0. The paper describes the latest version
at the time of writing which is considered as an alpha stage.
While the basic concepts and core functionalities are well
established, the API will still have to undergo some cleanup
and symmetrization, before a stable version (1.0) will be
released.
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