
STREAMING POOL - MANAGING LONG-LIVING REACTIVE STREAMS
FOR JAVA

A. Calia, K. Fuchsberger, M. Gabriel, M.-A. Galilée, J.-C. Garnier, G.-H. Hemelsoet,
M. Hostettler, M. Hruska, D. Jacquet, J. Makai, T. Martins Ribeiro, A. Stanisz,

CERN, Geneva, Switzerland

Abstract
A common use case in accelerator control systems is sub-

scribing to many properties and multiple devices and com-
bine data from this. A new technology which got standard-
ized during recent years in software industry are so-called
reactive streams. Libraries implementing this standard pro-
vide a rich set of operators to manipulate, combine and sub-
scribe to streams of data. However, the usual focus of such
streaming libraries are applications in which those streams
complete within a limited amount of time or collapse due to
errors. On the other hand, in the case of a control systems we
want to have those streams live for a very long time (ideally
infinitely) and handle errors gracefully. In this paper we de-
scribe an approach which allows two reactive stream styles:
ephemeral and long-living. This allows the developers to
profit from both, the extensive features of reactive stream
libraries and keeping the streams alive continuously. Further
plans and ideas are also discussed.

INTRODUCTION
In practically any application within the operational en-

vironment of CERN accelerators, a common pattern is re-
peated:

• Subscribe to N properties of different devices,

• extract values and/or transform and/or combine them
with values coming from other devices

• and buffer the incoming values to have a history of a
certain length.

For the first part (subscription), a common mechanism exists
through JAPC (Java API for Parameter Control). However,
already this part is not ideally solved as it implies coupling
down to the device layer of each application. For the two
other steps, no common approach exists at all. The Stream-
ing Pool project aims to close this gap by providing coherent
means to implement processing- and abstraction layers. The
code was kept general (not bound to any CERN specific li-
brary) and was open sourced under Apache License 2.0 [1].
Streaming Pool was designed with the following objec-

tives in mind:

• Decoupling of Layers (e.g. When subscribing to the
stream delivering the tune of a machine, the application
does not have to know which device delivers this),

• rich set of operators for transformations,

• sensible defaults for error treatment

• and testability built in from the beginning.

Since this framework was never developed as a dedicated
product, but always as a side product of operational applica-
tions under development, its feature set evolved according to
the requirements from these applications. Therefore, some
goals are only partly achieved in the current version (E.g.
the decoupling of layers is possible, but in some applications
not fully implemented). However, most of them (the last
three in the above list) are fully available: Error treatment
and testability are enabled by the internal design, while the
rich set of operations are provided by the chosen technology
(reactive streams), as described in the following sections.

REACTIVE STREAMS
A stream of data is a specialization of the Observer de-

sign pattern that is especially useful in contexts where the
business logic of the application can be expressed as a series
of transformations over a flow of data. In a stream there are
typically three components:

• Publisher: is the source (or start) of the stream, it pushes
the data through the stream.

• Processor: is an operation applied to a data item cur-
rently flowing through the stream.

• Subscriber: it consumes the data of the stream.

According to the items described above, a stream of data
has a certain Publisher, zero or more Processors that act on
the data (transforming them according to the business logic)
and one or more Subscribers that consume the data.
Reactive streams are an initiative for creating truly asyn-

chronous data streams that handle back pressure in a non-
blocking way [2]. Being asynchronous, a reactive stream
can switch context (thread of execution) at any time between
Processors. In this scenario, boundaries between threads
need special care. Avoiding the undesirable situation of un-
bounded buffers, reactive streams introduced the concept
of back pressure. Data in a reactive stream flow on request,
e.g. a Subscriber requests 10 items from the stream. In this
way the Publisher does not flood the Subscriber with data
that it is not able to process. A back pressure strategy is
then needed in order to define the behavior when the afore-
mentioned rule cannot be applied. For example, lets assume
subscribing to a hardware device publication which delivers
updates on a rate of 100 items per second. If the processing
pipeline can only accept 90 per seconds there are typically
three options (although more sophisticated techniques are
possible):

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA176

Software Technology Evolution
THPHA176

1837

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

• Drop latest: the item that comes from the device and
cannot be processed by the pipeline is discarded.

• Keep latest: the latest item is kept and it will be pro-
cessed first while the oldest are discarded. This strategy
can be particularly useful when dealing with real-time
data flows.

• Buffer: the new items that cannot be processed are
stored in a buffer and are used according to the order of
arrival. This strategy can be used when the data flow
speed changes over time and the system can adjust its
speed to the source (unbounded buffers are undesired).

LONG-LIVING STREAMS
The major reactive stream implementations for Java are

Project Reactor [3] and RxJava [4]. Both implementations
share the same concept regarding error handling: the sub-
scription to the source collapses if an error occurs and the
Subscriber has to re-subscribe (reconnect). This strategy is
very useful e.g. in a web scenario: When an HTTP request
generates an error, it is reported to the user and the client
possibly reconnects and retries the request.

Streamingpool offers another approach to the problem by
preventing an error from collapsing a stream. This strategy
is useful in such scenarios where creating subscriptions is
expensive, has side effects, or when the user wants to create
a continuous analysis of real-time data while not being both-
ered with error-handling code and re-subscription to streams.
For overcoming the problem of handling errors, each stream
in the Streamingpool offers a parallel stream of Throwable,
so that all the errors that would collapse the reactive stream
are deflected to the errors stream. In this way, e.g. a timeout
exception will not collapse the subscription and the user
can handle the exception accordingly (reporting on a GUI
for example). This approach opens the door to long-living
reactive streams, where problems producing, processing or
delivering one item do not hamper the ability of the stream
to deliver future items.

ARCHITECTURE
The Streamingpool library has a simple yet powerful ar-

chitecture. Its main goal is to provide an abstraction over the
management of reactive streams in a software application.
It provides a simple API for discovering, providing and

creating reactive streams. It focuses on sharing the streams
and creating long-living data flows for online analysis or any
business logic.
The key concept is the StreamId. A StreamId uniquely

identifies a reactive stream in the Streamingpool in a type-
safe way. The stream itself can be accessed (discovered)
using the DiscoveryService interface. If a reactive stream is
not present in the Streamingpool, it can be provided using
the ProvidingService or lazily created using a StreamFactory,
TypedStreamFactory or StreamCreator. Fig. 1 summarizes
the afore-mentioned flow. Whenever the user discovers a

StreamId, the Streamingpool checks if it already has the cor-
responding reactive stream in the pool of streams, reusing
the existing ones. If this is not the case, the creation (materi-
alization) is performed and a reactive stream is created from
the information carried by the StreamId. The newly created
stream is the saved into the pool so that it can be reused on
subsequent calls.
In the next sections each component of the presented

software architecture is explained in details.

Figure 1: Streamingpool architecture flow.

StreamId
In order to identify a stream, Streamingpool uses the con-

cept of StreamId.
An instance of a StreamId uniquely identifies a Publisher

<T> so the developer must provide correct implementations
of the hashCode() and equals(Object o) methods. In the
case the before mentioned methods are not correctly im-
plemented, the Streamingpool will not reuse streams and
the behavior may be unpredictable (delays between reactive
streams sharing subscriptions happen and this will cause
mis-synchronization).

The fact that a StreamId identifies a specific stream, means
it can carry information and it can be parametrized. For
example, for accessing the hardware publication of a device,
one could create a DeviceStreamId<T> and then parametrize
it with the device identifier, Listing 1:

Listing 1: Usage of an hypothetical DeviceStreamId class.

DeviceStreamId . ofDevice ("LHC.TUNE. BEAM1 ").
subscribe (...) ;

DiscoveryService
The mechanism that allows a user to get streams from the

Streamingpool is called DiscoveryService. When initializing
the Streamingpool using Spring, a DiscoveryService bean
becomes available for injection.
The API of the DiscoveryService consists of a sin-

gle method: discover(StreamId<T> id) which returns a
Publisher<T>.
Usually, in the Streamingpool streams are created lazily,

at discovery time. Practically, it means that when the user
discovers a StreamId, the Streamingpool triggers its creation
if it is not present in the system. Therefore, a call to the
method DiscoveryService.discover(...) is blocking.

Listing 2 shows an example of the discovery of a StreamId
and a subscription to it using RxJava.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA176

THPHA176
1838

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Listing 2: Discover and consume a StreamId.

DiscoveryService discoveryService = ...;
AnyStreamId streamId = new AnyStreamId ();

Publisher <Any > stream =
discoveryService . discover (streamId);

Flowable . fromPublisher (stream)
. subscribe (System .out :: println);

StreamFactory
A StreamFactory represents the mechanism for creating

reactive streams (Publisher<T>) from a given StreamId<T>.
In the Streamingpool life-cycle, whenever the user tries to

discover a StreamId for the first time it triggers the creation
(materialization) of the corresponding Publisher<T>. Since
the StreamFactory is themost generic way of creating reactive
streams, its method signature is create(StreamId<T> id,
DiscoveryService discoveryService) which must return an
ErrorStreamPair<T>.
As shown in Listing 3, an implementation of a

StreamFactory is not bound to a specific StreamId type, in-
stead all registered factories are queried for every StreamId
to be created. When a StreamFactory is not able to create the
given StreamId, it can simply return ErrorStreamPair.empty
(). In order to be able to create a hierarchy, along with the
StreamId the StreamFactory receives a DiscoveryService that
can be used to discover other dependent StreamIds.

Listing 3: StreamFactory example for creating an Inte-
gerRangeId.

public class IntegerStreamFactory
implements StreamFactory {

@Override
public <T> ErrorStreamPair <T> create (

StreamId <T> id , DiscoveryService
discoveryService) {

if (!(id instanceof IntegerRangeId)) {
return ErrorStreamPair . empty ();

}
IntegerRangeId rangeId = (

IntegerRangeId) id;
int from = rangeId . getFrom ();
int to = rangeId . getTo ();
Flowable <Integer > rangeStream = range (

from , to - from);
return ErrorStreamPair . ofData ((

Publisher <T >) rangeStream);
}

}

TypedStreamFactory
In Streamingpool, a TypedStreamFactory is a specialization

of a StreamFactory that just creates one type of StreamId. For
example, consider an use case that requires two different
types of streams, identified e.g. by DeviceTypeAStreamId and
DeviceTypeBStreamId. Either a single StreamFactory can be
used for materializing either of them, or the responsibility
can be split by using two different TypedStreamFactory, one

that is responsible to create a DeviceTypeAStreamId and the
other which creates DeviceTypeBStreamId.

StreamCreators
A StreamCreator is a special way (shortcut) of materializ-

ing a StreamId when the instance of the StreamId is known
beforehand (e.g. a constant). Listing 4 shows how to cre-
ate a StreamCreator that is used to materialize the StreamId
LIVE_DEVICE_ID defined as constant. Notice that the API of a
StreamCreator allows to specify it as a Java lambda and that
it provides a DiscoveryService object for further discoveries.

Listing 4: StreamCreator example.

ImmutableIdentifiedStreamCreator .of(
LIVE_DEVICE_ID ,
discoveryService ->

DeviceApi . streamFrom (" LIVE_DEVICE ")
);

ProvidingService
Complementary to the DiscoveryService, the

ProvidingService can be used to supply a Publisher<T
> into the Streamingpool. The API is kept simple on
purpose: provide(StreamId<T> id, Publisher<T> stream).
Practically, after providing a Publisher and the correspond-
ing StreamId, the Streamingpool returns the same Publisher
whenever the StreamId is discovered.

This method is mainly provided for unit tests. The pre-
ferred way of materializing a stream in the Streamingpool
context is through the StreamFactories (or any of the variants
described above).

ERROR HANDLING
As described before, Streamingpool allows holding long-

lived reactive streams. Errors are handled gracefully (i.e.
without collapsing any streams). This requires that the in-
volved stream factories are implemented such that they de-
flect the errors onto a dedicated error stream:
Whenever a stream factory creates a StreamId it returns

an ErrorStreamPair of a Publisher<T> for the data and the
corresponding Publisher<Throwable> for any errors that may
occur (see Listing 3).

Both the data and the error streams are then registered in
the Streamingpool for future lookups. The error stream for
any StreamId can be looked up by resolving the associated
ErrorStreamId (Listing 5).

Listing 5: Usage of an ErrorStreamId for discovering error
streams.

DiscoveryService discoveryService = ... ;
DeviceStreamId deviceId = DeviceStreamId .

fromName ("LHC.TUNE. BEAM1 ");
ErrorStreamId deviceErrorsId =

ErrorStreamId .of(deviceId);

Publisher < DeviceData > dataStream =
discoveryService . discover (deviceId);

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA176

Software Technology Evolution
THPHA176

1839

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Publisher <Throwable > errorStream =
discoveryService . discover (
deviceErrorsId);

It is also possible to subscribe for the error streams of all
streams created by the pool. This is useful e.g. to create a
dashboard showing all exceptions that have recently occurred
and allows monitoring the health status of the application or
system in question.

TESTING
Streamingpool is designed with unit testing in mind. The

fact that the DiscoveryService does notmaterialize a stream if
already present in the Streamingpool makes it easy to provide
dedicated streams for testing. Through this mechanism, the
logic under test can be isolated even in complex applications
that use different layers of streams; a portion of a chain of
processing can be isolated by providing the mocked input
streams through the ProvidingService.
For example, consider the logic producing the stream

for StreamId A should be tested. Further consider stream
A depends on two input streams (StreamIds B and C). By
providing mocked streams for B and C into the pool, when
discovering A, the mocked streams will be used for B and
C, allowing A to be tested independently.

Due to its effortless compartmentalization of components,
the use of Streamingpool is a first step towards creating stable
and robust software [5].

APPLICATIONS
The Streamingpool framework was developed mainly

along a new application for LHC injection diagnostics [6].
In this application, the streaming pool is combined with the
tensorics library [7, 8] to provide a reusable analysis frame-
work [9]. While this is currently the most challenging use
case, Streamingpool is also used for various simple control
room applications, e.g. one that displays the remaining time
for LHC injection kicker soft-start or the graphical user inter-
faces that control chromaticity [10] and coupling [11] of the
LHC. Also in non-gui use cases, streaming pool started to be
used. For example, CERNs TE-MPE-MS section provides
(using Streamingpool) streams with the decoded beam per-
mits that can be logged and consumed by other applications.

FUTURE DEVELOPMENTS
From the early days of Streamingpool it was clear that

the logical next steps in the development would have to be
transporting streams over the network. At that time, the
reactive streams technology was still quite young, so it was
decided to postpone the choice of technology for this and
focus on the functionality described in the above sections.
Meanwhile, the technology evolved and several options are
available. For example, the Spring project included reactive
controllers in their version 5.0. Using gRPC [12] as network
layer is another option.

The second aspect, where future development will focus
on, is including more diagnostics and debugging function-
alities. Due to the standardized approach in Streamingpool
generic Components (e.g. graphical user interfaces) can be
built which e.g. can show the relations between the streams
or the time structure of the related items. One example of
such a generic GUI component which already exists, is a
JavaFx panel that shows the exceptions of all error streams
provided by a pool, which can be included in any application
using Streamingpool as a backend (Fig. 2).

Figure 2: Example of a reusable GUI component, showing
the deflected errors of an application.

REFERENCES
[1] https://github.com/streamingpool

[2] http://www.reactive-streams.org/

[3] https://projectreactor.io/

[4] https://github.com/ReactiveX/RxJava

[5] A. Calia, K. Fuchsberger, and M. Hostettler, “Testing the
untestable: A realistic vision of fearless testing (almost) every
single accelerator component without beam and continuous
deployment thereof”, in Proc. IBIC’16, Barcelona, Spain,
Sep. 2016, pp. 399–402, DOI:10.18429/JACoW-IBIC2016-
TUPG30

[6] A. Calia, K. Fuchsberger, G.H. Hemelsoet, and D. Jacquet,
“Development of a new system for detailed LHC filling di-
agnostics and statistics”, in Proc. IPAC’17, Copenhagen,
Denmark, May 2017, pp. 1905–1907m doi:10.18429/
JACoW-IPAC2017-TUPIK088

[7] K. Fuchsberger et al., “Tensorics - a Java Library for
Manipulating Multi-Dimensional Data With presented at
ICALEPCS’17, Barcelona, Spain, Oct. 2017, paper TH-
PHA177.

[8] https://github.com/tensorics

[9] K. Fuchsberger et al., “A Framework for Online Analysis
Based on Tensorics Expressions and Streaming Pool”, pre-
sented at ICALEPCS’17, Barcelona, Spain, Oct. 2017, paper
THPHA178.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA176

THPHA176
1840

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

[10] K. Fuchsberger and G. H. Hemelsoet, “LHC Online Chro-
maticity Measurement - Experience After One Year of Op-
eration”, in Proc. IBIC’16, Barcelona, Spain, Sep. 2016, pp.
20–23, doi:10.18429/JACoW-IBIC2016-MOBL04

[11] G.H. Hemelsoet et al., “Online coupling measurement
and correction throughout the LHC Cycle”, presented

at ICALEPCS’17, Barcelona, Spain, Oct. 2017, paper
TUPHA119.

[12] https://grpc.io

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA176

Software Technology Evolution
THPHA176

1841

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

