
PREVENTING RUN-TIME BUGS AT COMPILE-TIME USING C++ *

R. Neswold , Fermilab, Batavia, IL, USA  †

Abstract
In order for a system to be reliable, its software needs

to be carefully designed. Despite our best efforts, how-
ever, errors occur and we end up having to debug them.
Unfortunately, debugging an embedded system changes
its dynamics, making it difficult to find and fix concur-
rency issues. This paper describes techniques, using C++,
making it impossible to write code susceptible to certain
run-time bugs. A concurrency library, developed at Ferm-
ilab, is used in the examples illustrating these techniques.

INTRODUCTION

The C++ Standard Template Library (STL) is an im-
pressive body of work, giving programmers a high-level
library while still being performant. Although C++ tem-
plates started as a way to generalize containers across any
type, the STL authors have discovered techniques which
allow complex decisions to be made at compile time. We
would like to use this feature to enforce constraints on
how our code can be written.

When a template is used, its parameters are specified
and they, in turn, get substituted in the body creating a
specialization of the template. More interesting, if the
library defines a version of the template where the types
have been picked, the compiler will use that template in-
stead of specializing the default one[1]. This is not inher-
itance; each specialized version of a template could have
a different API, if it was useful.

Template parameters can also take values, which then
get used by the template body as constant values. This

may seem similar to using #define, but it’s not; each
instantiation of a template is a new, unique type. An Ar-
ray<10> has no relation to an Array<20>, as far as the

compiler is concerned (unless the template derives them
from the same base class.) We can use this uniqueness to
our advantage.

Over the past several years, we've developed a library
of C++ templates for our VxWork-based systems. These
templates make writing our embedded software easier and
more reliable. Writing our drivers is easier because the
templates generate the mundane, boilerplate code and let
us focus on the core of the driver. Our reliability improves
because our concurrency library makes most concurrency
bugs impossible.

VERIFYING REQUESTS

When a driver in our embedded system receives a re-

quest from the network, part of the request consists of a
length value, an offset value, and a buffer of data (for
readings, the buffer is to be filled and returned; for set-
tings, the buffer contains data.) Since our controls system

supports array devices, the offset could be non-zero.
Every driver needs to validate the request before continu-
ing which means both the length and offset values need to
be a multiple of the base data size of the device. Plus,
combined, they cannot exceed the total size the driver
expects. Although this isn’t rocket science, it is a tedious
part of writing drivers. A further complication resides in
the data buffer. ACNET has VAX-centric byte-ordering
which is different from our PowerPC systems, so de-
velopers were responsible for byte-swapping to and from
the network. All these details adds one more layer of de-
bugging when developing, so we felt we needed to fix it.

Proxy objects are used in our library to both verify the
request parameters and properly exchange data with the
buffer associated with the network. If the request para-
meters are invalid, the proxy’s constructor throws an ex-
ception and the remote client gets the appropriate bad
length or bad offset error status. Otherwise, the proxy
object is created and is used to access the raw buffers,
returning the data in a native format.

For instance, if a driver expects an unsigned, 16-bit
integer as a setting, it would start its handler with

SettingProxy<uint16_t> setting(req);

This template expands to two tests (req is a pointer to
the request structure); the offset must be zero and the
length must be 2. It also declares a uint16_t typecast
operator so that using setting in an expression returns a

properly byte-swapped, 16-bit integer. The template
doesn’t define an assignment operator, so the compiler
generates an error if the programmer tries to write to the
setting (which is always incorrect.)

This template works for all simple data types.
But what if we have an array device? We use template

specialization to tell the compiler what to do if it sees an
array type. If our driver accepted up to four, 32-bit in-
tegers, for instance, it would use this

SettingProxy<int32_t[4]> setting(req);

Now the test makes sure the length and offset are mul-
tiples of 4 bytes and they don’t exceed the limits of a four
element array of integers. In addition, rather than define a
typecast operator, this object defines the subscript operat-
or which returns an int32_t.

For completeness, specializations were also defined for
pointer and reference types. Since it doesn’t make sense
to pass pointers or references across the network, these
specialized template define an empty class so trying to
use them results in compile-time errors.

In the case that a driver returns data to a request, a
ReadingProxy is used. This proxy template has the same
validation tests as the setting and it, too, recognizes array
types. But instead of defining operators that access the

 Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy*

 neswold@fnal.gov†

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA174

THPHA174
1834

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

data, this template defines assignment operators, making
these objects write-only.

CORRECT CONCURRENCY

Concurrency is a part of modern systems and adds
complexity to a project. If data access isn't serialized
properly, shared state may become corrupted. If a code
path doesn't release a mutex, other threads will block
forever. What makes concurrency issues difficult to dia-
gnose is that the errors that arise from these issues don’t
indicate the actual cause. Even more troubling, concur-
rency issues are resistant to debuggers since the very act
of starting and stopping threads change the conditions that
caused the problem.

The following example shows some design patterns the
author used to precisely describe a concurrency environ-
ment so the compiler can enforce correct usage. To illus-
trate some of the concepts, we'll start with a C example
for VxWorks and improve it step-by-step.

The thread API for VxWorks (and POSIX threads, for
that matter) are for the C language which means every
detail is managed by the programmer. The code in Figure
1 is a short example, but shows some of the complexity:

The function, f(), locks and unlocks the mutex around
the code that accesses the shared data. The programmer
also needs to handle the situation when the function re-
turns early, like when someFunction() returns ERROR,
to make sure the mutex is unlocked. Some follow the
convention of never allowing early returns in a function,
to avoid details like this. Unfortunately, the compiler
doesn't enforce conventions so you have to hope future
maintainers honor them. In addition, forcing all returns to
be at the end of a function can actually complicate the
code further - some cases require using goto - just to
avoid the details of managing resources. Rather than us-
ing conventions or describing the requirements in com-
ments, we'd rather have the compiler enforce them.

The first step in accepting the compiler's help is let it
manage locking the mutex. The C++ standard defines an
object’s lifetime to strictly be when it goes in and out of

scope so let the object own the resource while it exists.
This pattern is so common, it has an acronym: RAII . We ‡

can take the approach used by the Boost library and the
C++ thread library and use a lock object to control owner-
ship of the mutex. In Figure 2, the VxWorks API is hid-
den in our Mutex and Lock objects. The Mutex class
doesn't publicly expose any lock/unlock methods. It is
purely owned through a lock object. Note the nested

braces to end the lock's scope before someThirdFunc-
tion() is called. This matches the scope of mutex own-
ership in the previous example. Note also that early re-
turns are correctly handled by the compiler which, incid-
entally, means this example is exception-safe.

At this point, the code properly manages ownership of
the mutex, but that's it; a developer could still call some-

Function() without owning the mutex. He could even
manipulate the data without any serialization! We need a
further design pattern to limit access to data only when a
lock is held.

Rather than directly accessing the data, a small set of
functions can be created which manipulate the state. For
instance, a stepper motor controller may need two re-

 Resource Acquisition Is Initialization‡

static SEM_ID mtx;

static int data;

void f()

{

 semTake(mtx, WAIT_FOREVER);

 if (ERROR == someFunction(data)) {

 semGive(mtx);

 return;

 }

 data = anotherFunction();

 semGive(mtx);

 someThirdFunction();

}

Figure 1: C Implementation.

static Mutex mtx;

static int data;

STATUS someFunction(Mutex::Lock const&, int);

int anotherFunction(Mutex::Lock const&);

void f()

{

 {

 Mutex::Lock lock(mtx);

 if (ERROR == someFunction(lock))

 return;

 anotherFunction(lock);

 }

 someThirdFunction();

}

Figure 3: Requiring locks.

static Mutex mtx;

static int data;

void f()

{

 {

 Mutex::Lock lock(mtx);

 if (ERROR == someFunction(data))

 return;

 data = anotherFunction();

 }

 someThirdFunction();

}

Figure 2: C++ w/RAII.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA174

Software Technology Evolution
THPHA174

1835

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

gisters be modified to set the number of steps and direc-
tion. Both register accesses can be placed in a single func-
tion, forming a primitive that moves the stepper motor.

The set of functions are made public and become the
"primitives" which update the state. We can get the com-
piler's help to ensure the mutex is held by adding a (un-
used) parameter, as shown in Figure 3. Since the function
specifies a lock needs to be passed, the compiler will re-
quire a lock to be passed — even though it’s unused —
which means the mutex is guaranteed to be owned during
the function's execution.

This third iteration introduces several improvements.
The “primitives" are now composable. They can be called
safely in any order because we know the mutex is held the
entire time. Also, since these functions know they are
executing in an environment with a locked mutex, they
don't do any locking of their own so there's no reliance on
using "recursive mutexes”.

Is there any further improvement to be made? In the
library used at Fermilab, we have made one further im-
provement. C++ templates take parameters which are,
typically, type names. But they can also be constants such
as integers and addresses that can be resolved at link
time. So where the C++ and Boost libraries use the tem-
plate parameter to specify the type of mutex the lock
locks (recursive mutex, semaphore, etc.), we use it to spe-
cify which mutex to lock.

Figure 4 shows the last improvement. A typedef is
used to simplify the lock's type. In this final form, the
functions not only specify a mutex needs to be held, but it
also specifies which mutex needs to be held!

It should be mentioned that a third type of constant
template parameter is possible, the offset of a field in an
object. Our library also supports this form of lock so ob-
ject methods can require an object’s mutex be held

Benefits

A typical function is more complicated than the ex-

ample given here. You could imagine how several threads,

using code written in the C-style, could run into concur-
rency issues. Designing with the style of the final ex-
ample eliminates nearly all concurrency-related bugs:

• The compiler perfectly tracks object lifetimes, so
locks are always freed properly.
• Locks templates only work with the correct mutex, so
you can’t lock the wrong mutex
• Functions specifying (unused) lock parameters de-
claring the environment in which they need to work
correctly.

Performance

C++ templates are found in header files, so when using
templates, the compiler usually has all the source code to
instantiate them. The compiler is, therefore, able to ag-
gressively inline the source code. As a result, the small
functions that take the unused lock parameter get com-
pletely inlined and there is no run-time penalty for having
the extra parameter. On our VxWorks 6.7 compiler (GNU
C++ 4.1), the assembly output between the first, C ex-
ample and the final version was essentially identical. In
other words, the extra notation that’s used to verify cor-
rect concurrency usage still results in code nearly identic-
al to hand-written C code.

Improvements

We’re continuing to look for new ways to enhance our
libraries to make developing easier.

One experimental feature is using templates to associ-
ate a variable with a mutex. This would remove the need
of functions using a lock as a parameter since the vari-
ables themselves would require proof that a lock is held.
The current implementation has a heavy syntax, so we’re
trying to find ways to clean it up. Also, containers aren’t
handled well (someone could use a reference to an ele-
ment in an array after they released the mutex associated
with the array.) Hopefully we’ll be able to fix these defi-
ciencies.

CONCLUSION

Using templates in C++ is still cumbersome; template
syntax isn’t intuitive, experience is required to get com-
fortable designing libraries with them, and error messages
are difficult to understand. However, the benefits are
worth the effort. Template specialization allows the com-
piler to select the best template for the job, allowing op-
timal code to be generated and the most appropriate API
be defined.

We found that, with these techniques, we’re able to tell
the compiler what needs to be done, not how to do it.

REFERENCES

[1] Vandevoorde, David, and Nicolai M. Josuttis. C++
Templates: The Complete Guide. Boston, MA: Ad-
dison-Wesley, 2011, pp. 200-203.

Mutex mtx;

static int data;

typedef Mutex::Lock<&mtx> LockType;

STATUS someFunction(LockType const&, int);

int anotherFunction(LockType const&);

void f()

{

 {

 LockType lock;

 if (ERROR == someFunction(lock))

 return;

 anotherFunction(lock);

 }

 someThirdFunction();

}

Figure 4: Enforcing which mutex to use.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA174

THPHA174
1836

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

