
AUTOMATED SOFTWARE TESTING FOR CONTROL AND
MONITORING A RADIO TELESCOPE

B. Xaia, T. Gatsi , O J. Mokone†, SKA SA, Cape Town, South Africa

Abstract

The 64-dish MeerKAT radio telescope, under
construction in South Africa, will become the largest and
most sensitive radio telescope in the Southern
Hemisphere until integrated with the Square Kilometre
Array (SKA). Software testing is an integral part of
software development that is aimed at evaluating software
quality; verifying and validating that the given
requirements are met. This poster will present the
approach, techniques and tools used to automate the
testing of the software that controls and monitors the
telescope. Jenkins continuous integration system is the
server used to run the automated tests together with Git
and Docker as the supporting tools to the process. In
addition to the aforementioned tools we also use an
Automated Qualification Framework (AQF) which is an
in-house developed software that automates as much as
possible of the functional testing of the Control and
Monitoring (CAM) software. The AQF is invoked from
Jenkins by launching a fully simulated CAM system and
executing the Integrated CAM Tests against this
simulated system as CAM Regression Testing. The
advantages and limitations of the automated testing will
be elaborated in the paper in detail.

INTRODUCTION
Nowadays any software functionality is required to be

delivered faster and with minimum cost while
maintaining the quality expected. This applies to any
software and also to process automation applications.
These critical applications need to be extensively tested to
validate the requirements and ensure a smooth operation
of the targetted instrument. It is generally accepted to
divide tests according to their level of specificity into:
unit testing, where a specific section of code is tested
separately, and integration testing, where all individual
units are put together to be checked globally. The paper
describes the software environment where testing
procedures, techniques and the test methods employed
focusing basically in automated tests mechanisms as they
are applied within the CAM team. Among the tools and
techniques used in CAM for automated testing include
Jenkins, Github, slack, vitech core, *Automated
Qualification Testing Framework and Docker. Finally the
paper summarises the results and analysis of the
positives and drawbacks of applying these automated
testing techniques as compared to manual testing.

CAM DEVELOPMENT PLAN
MeerKAT CAM software is developed through agile

iterative implementation cycles with simple basic
solutions being put in place first, which are then
enhanced during subsequent development cycles, with
close input from the system engineers and commissioners
as the understanding of requirements matures [1]. This is
managed through the MeerKAT CAM project plan.

Various integration levels will allow verification
against a sequence of progressively more complete
system element configurations, including Unit testing,
Component testing, Integrated CAM testing, CAM
Qualification Testing, Lab Integration Testing and CAM
Acceptance Testing.

The CAM qualification stage for each cycle/timescale
will include unit testing, Component testing, a continuous
build server for Regression testing, Integrated CAM
Testing against CAM verification requirements producing
an automated Qualification Test Plan (QTP) and
Qualification Test Report (QTR).

Qualification testing is performed to functionally prove
the CAM design and implementation against the CAM
requirements. Qualification testing of CAM software is
performed on representative CAM hardware in the lab in
Cape Town with all external subsystem/devices
simulated. To ensure timely integration, the suppliers of
subsystems that the CAM interfaces to provide Karoo
Array Telescope Communication Protocol (KATCP) [2]
simulators that represent their subsystem’s external CAM
interface. In cases where the suppliers do not provide a
KATCP simulator for the subsystem, the CAM team will
develop such a subsystem simulator. The CAM
application software is released for deployment to site
after successful CAM qualification testing.

Acceptance testing is performed to accept the deployed
CAM subsystem on site. It will reuse a predefined set of
the CAM qualification tests that are non-intrusive and
benign and can therefore be executed on the real
hardware and on site. Figure 1 show the integrations,
qualification and acceptance testing in the cycle forms.

† ofaletse@ska.ac.za

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA164

THPHA164
1806

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 1: CAM development plan showing incremental software development and testing.

CORE MODEL
CAM requirements are captured in the MeerKAT

project in the Vitech CORE systems engineering
modelling database after the initial MeerKAT CAM
Requirements Review (RR).

CAM verification requirements are captured in CORE
and linked to requirements. Requirements for each cycle
are then allocated to CAM functions and the CAM
traceability matrix included in the CAM Requirement
Specification (RS) [3] are generated from CORE.

Requirements for each cycle are allocated to CAM
components in a traceability matrix for the CAM design
at each phase.

TESTING ENVIRONMENT
It is possible to run a configuration including only

simulated KATCP devices [2], or any combination of real
and simulated devices combined. This allows full
software development, unit testing and integration testing,
and CAM subsystem qualification testing without
dependency on the availability of hardware.

Although the full KATCP interface for each device is
implemented in the simulators, the actual functionality of
all the hardware components are not fully implemented;
each simulator implements behaviour to the level required
by CAM integration testing. However, antenna pointing
and modes are simulated with realistic timing, and a
representative simulation of the data output of the
correlator will be implemented.

While the CAM team is responsible for developing
most of the simulators, some of these device simulators
are contractually delivered by the subsystem contractor to
ensure that, given their knowledge of the device, the
behaviour of the device is reflected with sufficient
accuracy by the device simulator. Having a fully
simulated system available is critical to automated
testing.

UNIT TESTS
Unit tests validate the smallest components of the

system, ensuring they handle known input and output
correctly. Unit tests test individual classes in an
application to verify that they work under expected
boundary and negative cases.

There is a common myth among developers, that of
being overscheduled and therefore one has no time for
unit test with the hope that integrated tests will manage to
catch one’s bugs. That myth leads to the below vicious
cycle (Figure 2) where a developer will postpone unit
testing but end up with a less stable code with more bugs.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA164

Software Technology Evolution
THPHA164

1807

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2: Vicious cycle of postponing unit testing.

Each CAM component is sufficiently covered by Unit
Tests to ensure the units within the component are ready
for component testing. Unit Testing is actually considered
an output of test driven development. CAM has a
continuous build server that executes all unit tests on
standalone components/packages on a continuous basis.

Figure 3 gives a workflow of the software from when
the developer pushes a commit to GitHub where GitHub
uses a webhook to notify Jenkins of the update [4].
Jenkins then pulls the GitHub repository, including the
Dockerfile describing the image, as well as the
application and test code. Jenkins builds a Docker image
on the Jenkins slave node and instantiates the Docker
container on the slave node, and executes the appropriate
tests. After tests have been run, a report is sent to Jenkins
with test results and consecutively notifies the developer
via Slack.

Figure 3: Unit testing workflow.

The CAM team utilises Docker to unify tests build and

test environments across machines, and to provide an
efficient mechanism for deploying applications.
Integrating Docker into the Continuous Integration
pipeline [5] has helped the CAM team to reduce job time,

increase the volume of jobs run, enable flexibility in
language stacks and improve overall infrastructure
utilization.

AUTOMATED QUALIFICATION
FRAMEWORK (AQF)

The AQF is a developed software item (a nosetests
plugin called nosekatreport) supported by decorators in
the Integrated CAM Tests that provide a framework for
automated testing of the CAM Software and generating
test procedure and test report documentation.

This software item is a test equipment, used to test the
MeerKAT CAM, and is not part of the mission
performing equipment of either MeerKAT. The intention
of the qualification framework is to automate as much as
possible of the functional testing of the CAM software,
such that the largest portion of the Qualification Test
Report (QTR) for each timeframe is automatically
generated by the AQF when executing the Integrated
CAM Tests. This is achieved by developing a set of
integrated CAM tests with each test documented in-line
so that the AQF generates the appropriate qualification
documents from the tests. This generated document i.e.
AQF specification record specifies the requirements for
each Integrated CAM Test to support the AQF to extract
relevant information from each of the tests. The
documentation requirements will be for example,
tags/decorators against each test to identify the
requirements/verification requirements it implements,
docstring requirements to describe the test, the format to
identify/specify each test step, the type of test it is, etc.

In addition to the AQF being used for CAM
qualification testing in the lab, the intention is also to use
it for integrated CAM regression testing. In this context
the AQF will be invoked from a build server (Jenkins) by
launching a fully simulated CAM system once a week
and executing the integrated CAM tests daily (overnight)
against this simulated system as CAM regression testing.

Integration tests exercise an entire subsystem and
ensure that a set of components play nicely together.

INTEGRATION TESTS
As mentioned in the AQF section the automated

integrated CAM Tests are performed daily running
against a fully simulated system to cover CAM
functionality across multiple components and exercise the
full CAM subsystem in a “true-to-life” framework.
During the acceptance testing of a specific CAM
component for integration, all requirements allocated to
that component are covered by integrated tests.
Verification requirements that require an integration tests
are derived from system requirements in order to develop
the automated integration tests. Each automated
integrated CAM test is logged against the set of CAM
verification requirements it implements. Of importance
to note here is the fact that these tests are only run on the
master branch which is the branch where development is
happening. When all the integration tests pass we get a

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA164

THPHA164
1808

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

stable branch that is automatically created and this branch
can be used to create release branch which is tagged with
a specific software version number during software
deployment for production. Failing tests will require
developers to fix the bug and the solution is merged to the
master branch. The next automatically triggered tests will
show the results of the fixed tests. These tests are invoked
automatically at a time configured on the Jenkins server
usually at midnight to verify and validate the whole CAM
application software functionality. The Integrated CAM
Tests are developed as nose tests that are invoked and
decorated for the AQF. Once the Integrated Tests are run,
a report with the results is produced with all the
verification requirements covered. This test report forms
the bulk of the QTR.

Figure 4 depicts the Jenkins platform displaying the
results of a previously run CAM set of integrated tests
showing the last successful and last failed runs as well as

the duration of the tests. Within this platform one can
navigate to tests results to view how individual tests ran
and the failures which is then useful for fault finding and
bug fixing.

CONCLUSION
Most of the automated tests precisely perform the

similar operations every time they run; hence human
errors are very much limited and almost eliminated.
Automation streamlines software processes by following
the same steps for a given test case to reproduce a defect.
While automation tools can be expensive in the short-
term, they save you money in the long-term. They not
only do more than a human can in a given amount of
time, they also find defects quicker. This allows the team
to react more quickly, saving you both precious time and
money. There is also a wider test coverage when running
tests automatically as a lot of tests can be bundled
together on one platform to execute all at once and the
results at one glance on the Jenkins dashboard. Also on
the Jenkins build server every developer can sign into the

Jenkins testing system and see the results at any point in
time. This allows for greater team collaboration and a
better final product.

While the initial setup of test cases may take a while,
once you’ve automated your tests, you’re good to go.
You won’t have to continuously fill out the same
information or remember to run certain tests. Everything
is done for you automatically. Filling out the same forms
time after time can be frustrating, and not to mention
boring. Test automation solves this problem.

The process of setting up automated test cases takes
coding and thought, which keeps your best technical
minds involved and committed to the process. The QTP
and QTR generation functionality of the AQF framework
is a very useful component and output of the whole
automated testing process. It allows for the analysis,
investigation and interpretation of the test results. Figure
5 shows the QTR displaying the test results. While the
automation process cuts down on the time it takes to test
everything by hand, automated testing is still a time
intensive process. A considerable amount of time goes
into developing the automated tests and letting them run.
While automated tests will detect most bugs in your
system, there are limitations that involve visual
considerations. Changes in these aspects can only be
detected by manual testing, which means that not all
testing can be done with automatic tools.

Figure 5: QTR report produced by CORE with test
results.

Figure 4: Continuous integration tests on Jenkins platform.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA164

Software Technology Evolution
THPHA164

1809

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

REFERENCES
[1] L. Van den Heever et.al., “CAM Development and

Qualification Plan”, SKA SA, Revision 5, (2015)
[2] S. Cross, “Guidelines for Communication with Devices”,

September 2017,
https://media.readthedocs.org/pdf/katcp-
python/latest/katcp-python.pdf

[3] Van Den Heever L., Swart P., Alberts T., Renil R.,
“MeerKAT Control and Monigtoring Requirement
Specification”, SKA SA, Revision 5, (2015)

[4] Jenkins with GitHub, Spetember 2015,
https://jenkins.io/solutions/github/

[5] Building a Continuous Integration Pipeline with Docker,
September 2017,
https://www.docker.com/sites/default/files/Us
eCase/RA_CI%20with%20Docker_08.25.2015.pdf

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA164

THPHA164
1810

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

