
EXPERIENCE WITH STATIC PLC CODE ANALYSIS AT CERN

C. Tsiplaki∗, B. Fernández, E. Blanco, CERN, Geneva, Switzerland

Abstract

The large number of industrial control systems based on

PLCs (Programmable Logic Controllers) available at CERN

implies a huge number of programs and lines of code. The

software quality assurance becomes a key point to ensure

the reliability of the control systems. Static code analysis is

a relatively easy-to-use, simple way to find potential faults

or error-prone parts in the source code. While static code

analysis is widely used for general purpose programming

languages (e.g. Java, C), this is not the case for PLC program

languages. We have analysed the possibilities and the gains

to be expected from applying static analysis to the PLC code

used at CERN, based on the UNICOS framework. This

paper reports on our experience with the method and the

available tools and sketches an outline for future work to

make this analysis method practically applicable.

INTRODUCTION

Programmable Logic Controllers (PLCs) are the most

popular control devices for industrial control systems due

mainly to their robustness and the simplicity of building

control systems with them. In terms of software, one of the

main obstacles that automation engineers have to face in

order to improve the quality of PLC programs is the lack of

proper testing or verification tools. This problem does not

exist in other programming languages, which have a signifi-

cant number of tools to apply unit testing, static analysis and

even software model checking. However in the industrial

domain, the use of these techniques with PLCs is still far

from being a common practice

At CERN, PLC programs are developed using the UNI-

COS framework [1]. These programs are tested during the

development phase and the commissioning on the real in-

stallation. In addition to the traditional testing methods, a

methodology to apply model checking to PLC programs

was designed at CERN. A tool was created based on this

methodology: the PLCverif tool [2]. This technique is not

extensively used at CERN yet but it has been successfully

applied to several PLC programs at CERN [3], [4] and [5].

The goal of these techniques is to minimize the number of

bugs in the control logic of the PLC programs and the dis-

crepancies between the code and the specifications. Static

analysis of PLC programs is certainly a good complement

to these techniques and it has never been applied before to

CERN UNICOS PLC programs.

Static Analysis

The basic idea of static code analysis is to examine a

program without actually executing it [6]. It is performed

by automated tools and is similar to code review or program
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comprehension. The main benefit of this method is the

early detection of potential bugs in the development process.

Another benefit is the future maintenance of the code as it

can impose the code guidelines of the organization. While it

can often be difficult to analyze whole programs due to the

size of software projects, static analysis tools can be used

to examine the on-going projects for violations as they are

being created [7].

Some of the problems that static analysis can detect are:

naming conventions violations, bad code smells (e.g. dead or

duplicated code), overcomplicated expressions, multitasking

problems, etc. There are several methods for static analysis

depending on the kind of violations they are meant to detect.

Some of the most popular ones are rule-based AST (Abstract

Syntax Tree) analysis, control-flow analysis and Data-flow

analysis.

The availability and use of static analysis tools for PLC

programs is still limited, however researchers and companies

are advancing on this field to bring static analysis techniques

to the PLC domain [8].

Motivation

Our goal is to explore the potential of static analysis for

the UNICOS PLC programs and complement our testing

and verification techniques in order to improve the quality

of our programs. This paper presents an analysis of the

characteristics of these programs and a basic review of some

relevant static analysis tools for PLC programs.

The existing CERN methodology to perform model

checking of PLC programs has the necessary modularity

and flexibility to be extended in order to apply static analysis.

Reusing some of the modules would allow us to integrate

rule-based AST analysis techniques with a relatively small

effort. This paper also presents a first attempt to develop

basic static analysis rules in the PLCverif environment.

UNICOS PLC PROGRAMS

This section describes the characteristics of the UNICOS

PLC programs in order to identify the potential violations

that static analysis can detect in the source code. The UNI-

COS framework [1] is based on a well-defined set of standard

device types or objects, which represent physical control

equipment (i.e. sensors and actuators) and functional units

of the whole process (e.g. refrigerator unit in a cryogenics

plant) as stated in the ISA-88 standard. UNICOS control

systems are built by connecting the instances of these objects

and adding the specific control logic to maintain the process

at the desired setpoints.

Automation engineers can develop UNICOS control sys-

tems using Siemens or Schneider PLCs. UNICOS supports

several IEC 61131-3 languages but SCL from Siemens and

ST from Schneider are the most common ones. In addition,
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parts of the specific process logic can be implemented using

GRAPH from Siemens and SFC from Schneider. The rest

of the paper focuses on SCL programs as the majority of

UNICOS control systems at CERN use Siemens PLCs.

At the PLC program level, this library of device types is

implemented as FBs (Function Blocks). Each FB contains

the generic logic to control the real device or subsystem that

represents. For example, the so-called OnOff FB contains

the generic logic to control two-state or on-off actuators, like

an on-off valve or a pump depending of the parametrization

of the object. The size of these FBs ranges from 100 lines

of SCL code for the most simple objects, for example the

DI (Digital Input) FB in charge of representing digital sig-

nals, to 600 lines of SCL code for the most complex ones,

for example the PCO (Process Control Object) FB, which

represents a functional unit of the whole process.

The fact that one single UNICOS object can represent

different physical devices makes the FB logic more com-

plex. In addition, the evolution of the code over the years,

by adding new functionality or modifying certain behaviors,

emphasizes this problem. Many input conditions, long ex-

pressions, nested If statements and similar problems can be

found in the SCL code. Figure 1 shows an example of the

UNICOS PCO SCL code.

(∗ AUTO REQUEST / SELECT ∗)
IF AuMoSt THEN

(∗Avoid the starting of PCO with a start Interlock ∗)
IF NOT (StartISt AND NOT RunOSt) THEN

RunOSt := AuRunOrder;
MOnRSt := AuRunOrder;

END_IF;
AuDepOSt := AuAuDepR;
IF (0.0 < AuOpMoR) AND (AuOpMoR < 9.0) THEN

IF OffSt THEN

OpMoSt := AuOpMoR;
ELSE

IF POpMoTab[REAL_TO_INT(OpMoSt-1),REAL_TO_INT(8-
AuOpMoR)] THEN

OpMoSt := AuOpMoR;
END_IF;

END_IF;
END_IF;

(∗ MANUAL REQUEST / SELECT ∗)
ELSIF MMoSt OR FoMoSt OR SoftLDSt THEN

...
END_IF;

Figure 1: Extract of the PCO SCL code.

In general, UNICOS produces medium or large PLC pro-

grams. Even to control small processes, UNICOS PLC

programs may have several thousands of lines of SCL code.

A large part of this program is generated automatically by the

UNICOS code generation tool from a high level specification

file, which contains the parametrization and relations bet-

ween the object instances. The rest of the code is the specific

logic, manually written by the PLC program developer.

In UNICOS, a specific naming convention for the PLC

program variables is imposed. Respecting this code conven-

tion is vital for the readability of the programs due to their

size and the large number of variables. The variables from

the SCL example in Figure 1 follow this convention.

In UNICOS SCL programs, the main program (OB1) is

interrupted by cyclic interrupts (OB35) and by error and

start-up interrupts (OB100, OB102, OB82, etc.). If different

Organization Blocks (OBs) use the same memory, potential

concurrency problems are present in these programs.

In summary, some of the most obvious potential problems

in UNICOS SCL programs are: complex expressions, na-

ming conventions, dead code, code repetition, unused varia-

bles, concurrency problems, assignment of output variables

more than once in the code, lack of comments in the code,

etc.

Most of these problems can be detected by rule-based AST

analysis, for example naming conventions, the detection of

nested If statements, etc. However concurrency problems

may need to be addressed by a different method (i.e. Call

Graph analysis [9]).

Another important fact is that the UNICOS framework

lacks formal and complete specifications for the PLC pro-

grams. The specification is based on a word document with

natural language where the process and control engineers sta-

tes the control requirements. Contrary to testing and model

checking, static analysis does not require any specification

to be applied.

The first goal is to apply static analysis to the library of

UNICOS device types. In a second step, the specific process

logic and complete UNICOS programs will be addressed.

RELATED WORK

As mentioned before, static analysis of PLC programs is

not a common practice in industry yet. Several researchers

are working in this domain, some examples are [10], [11]

and [12]. This section presents an overview of three of the

most relevant static analysis tools for PLC programs. These

tools are: PLC Checker, developed by Itris Automation [13];

the tool co-developed by the Johannes Kepler University, the

Software Competence Center of Hagenberg and the ENGEL

Austria GmbH [9] (JKU tool for future references); and

Arcade.PLC, a research project developed in RWTHAachen

University [14]. As part of the analysis, the three tools were

applied to one of the UNICOS objects, the Analog device

type SCL code.

PLC Checker. This tool analyzes PLC programs written in

Schneider (Unity Pro), Siemens (Simatic Step7), Rockwell

Automation (RSLogix5000) and OMRON (Sysmac Studio)

platforms. The tool contains a set of predefined static analy-

sis rules. The user, through the tool, has the possibility to

exclude errors from the analysis report, reducing the number

of false positives. Rules are based on their own Itris Automa-

tion Standard (coding guidelines). There are six categories

of static analysis rules: naming rules, commenting rules,

writing rules, structure rules, information utilities and opti-

ons. The current version of PLC Checker is meant to analyze

complete Step7 projects. Despite this fact, we were able to

perform an experiment only providing the individual FB of

the Analog in SCL. In this experiment, several violations
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related to the following categories were detected: writing

rules, structure rules and information utilities. For example,

unused variables and cyclomatic complexity problems were

detected. Cyclomatic complexity refers to the number of

different paths that can be executed in a routine. The higher

this number is, the more difficult it is to validate the correct

behavior of the routine.

JKU. This tool uses several analysis methods, such as AST

analysis, control and data flow analysis as well as call graph

and pointer analysis techniques. It supports static analysis of

PLC programs written in ST and SFC from the IEC 61131-3

standard plus some extensions of the Kemro language deve-

loped by KEBA AG. The current version of the tool aims to

detect eight different categories of violations: code metrics,

naming conventions, program complexity and possible per-

formance problems, bad code smells, architectural issues,

incompatible configuration settings, multitasking problems

and dynamic statement dependencies. Forty six rules were

implemented to detect these eight families. Many of these

rules target the specific features of the Kemro language. Due

to this fact, a precise experiment with our Analog device

type SCL code was not performed. However, a partial trans-

formation from SCL was given to the tool and violations

addressing unused variables and expression complexity were

detected.

Arcade.PLC. This tool applies model checking and static

analysis to PLC programs. It is based on abstract interpre-

tation to compute sound value ranges for variables and the

warnings that are generated in the code analysis are derived

from these value-range results. Arcade.PLC does a semantic

analysis of the code rather than matching different patterns

(rules). The tool supports PLC programs written in ST and

IL (Instruction List) languages from the IEC 61131-3 stan-

dard and the AWL(STL) languages from Siemens. For the

performed experiment, the SCL code was translated into

ST. Arcade.PLC provided the following types of violations:

loss of precision in expressions, assignments required on

specific cast, unused variables and output variables that were

assigned more than once in the source code.

STATIC ANALYSIS IN PLCVERIF

Despite the good features of the tools in the market, our

already available framework allows easy integration of sta-

tic analysis. The PLCverif methodology was designed to

apply model checking to PLC programs. Due to the mo-

dular architecture of the tool, some of the components can

be reused and adapted to apply static analysis. This section

briefly describes the architecture of PLCverif and presents

the possibilities of adding static analysis rules with two sim-

ple examples.

PLCverif

The workflow of PLCverif is presented in Figure 2. SCL

programs are translated into an intermediate representation

(IM), based on control flow graphs (CFG). This intermediate

representation – together with the requirements formalized

using the patterns – can then be used to generate the neces-

sary inputs for the formal verification tools, like nuXmv or

CBMC.

In order to generate the IM, the SCL program is parsed

using Xtext, a widely-known domain-specific language fra-

mework. Based on the description of the language to be

parsed (the grammar), Xtext generates editor, parser and an

Eclipse Modeling Framework (EMF) metamodel of the AST.

An AST is the object representation of a parsed program.

A high-level overview of the AST metamodel is shown in

Figure 3.

Each parsed SCL program is represented as a

PlcCode object, which contains block declarations

(FunctionDecl that can represent FCs, FBs and OBs),

data block declarations (DataBlockDecl) and user-

defined type declarations (UdtDecl). In the figure,

only the FunctionDecl is presented in detail. It has

a declaration body (DeclarationBody), consisting

of variable declaration blocks (VariableDeclBlock),

constant declaration blocks (ConstantDeclBlock) and

a statement list (StatementList). A statement list is a

collection of various statements, such as assignment state-

ments (AssignmentStatement), conditional statements

(IfStatement) and call statements (CallStatement).

Many more statement types exist in PLCverif that are not

shown in this figure, such as loops, case statements, etc.

The details of the declared variables, their types and the

different expressions are also not detailed for simplicity.

Static analysis rules can be implemented extracting the

information from the AST.

Example of Static Analysis Rules in PLCverif

In the PLCverif environment, nineteen basic rules for

AST analysis were implemented in Java. These rules mos-

tly concern potential code smells (for example dead code)

and the specific naming conventions for the UNICOS PLC

programs.

PLCverif provides some predefined methods to access

the AST which simplify the logic of the static analysis rules.

These methods target different parts of the program (function

declaration, function block names, etc.). Two examples of

convention rules are presented in the following paragraphs.

UNICOS naming convention rule: the idea of this rule is

quite simple. it stores in a temporal variable the variable

name that is processing and tries to match it with the UNI-

COS abbreviations which are stored in a string list. Table 1

shows a small subset of the UNICOS allowed abbreviations.

In the example shown in Figure 4 from the Analog

object, this rule returns three violations: The variables

fullNotAcknowledged, PenRstartSt and E_FuStopI

do not follow the UNICOS naming convention.

Nested conditional if statements rule: this rule is meant

to detect a bad coding practice, the nested IF clauses. As
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SCL code

Requirement

pattern

IMAST

Temporal logic

requirement
nuXmv model

CBMC input

(Annotated C code)

Verification result

CBMC execution

Model checking

ReductionsSA rules

Figure 2: PLCverif workflow including static analysis.

PLC program AST

PlcCode

FunctionDecl

-String name
-Type returntype

DataBlockDecl UdtDecl

«enum»
BlockType

OB
FB
FC

DeclarationBody

VariableDeclBlock

-VarDeclType type
ConstantDeclBlock StatementList

VariableDecl

-String name
-Type type

NamedConst

-String name
-String value

Statement

AssignmentStatement

-VariableDecl leftValue
-Expression rightValue

IfStatement

-Expression condition
-StatementList thenStatements
-StatementList elseStatements

CallStatement

-FunctionDecl calledFunc

CallParameter

-VariableDecl parameter
-Expression rightValue

*

* *

1

1

*
* 1

* *

*

parameters

*

Figure 3: PLCverif AST.

Table 1: Extract of the UNICOS Naming Convention

Abbreviation Keyword

E Enable

Pos Position

R Request

Mo Mode

St Status

M Manual

Ran Range

P Parameter

Fs FailSafe

Ack Acknowledgement

Un unacknowledgement

Au Auto

mentioned before, the UNICOS object FBs have complex

logic (see Figure 4). Moreover, nested IFs can lead to un-

reachable code if one of the conditions is never satisfied.

The implemented rule allows the UNICOS team to establish

(∗ Interlocks ∗)
IF E_FuStopI THEN

fullNotAcknowledged:=TRUE;
IF NOT AuMoSt THEN

IF NOT(PFsPosOn) THEN

MPosRSt:=PAnalog.PMinRan;
ELSE

MPosRSt:=PAnalog.PMaxRan;
END_IF;

END_IF;
IF PEnRstart THEN

EnRstartSt:= FALSE;
END_IF;

END_IF;

Figure 4: Extract of the Analog SCL code.

the maximum depth of the nested IF statements and when a

bigger depth is detected, it reports a warning to the user (see

Figure 5). By navigating in the statement list of the AST

and by using the predefined method caseIfStatement, all the

conditional IF statements were gathered. The high-level

idea of this rule is to check if the targeted IF statement is

placed in the bodies of another IF conditions; if this is the

case and if the depth is higher than the predefined value then

the warning is reported.

Rule-based AST analysis in PLCverif will allow us to

address many of the violations that we want to identify in

the UNICOS programs but obviously not all of them. Con-

currency problems for example may require the use of other

static analysis methods, like call graph techniques.

CONCLUSIONS

In order to increase the quality of the UNICOS PLC pro-

grams, our group started to integrate static analysis techni-

ques to complement the existing testing and verification

techniques applied at CERN. This paper presents an analysis

of the characteristics of the UNICOS PLC programs and a

review of some relevant PLC static analysis tools. The aim

was to see the potential of their application to the UNICOS

based control systems and to have a base for a decision of

how static analysis could be optimally introduced in our

environment.

The existing CERNmethodology to applymodel checking

of PLC programs is a perfect host for rule-based AST analy-

sis. This paper also presented two examples of static analysis

rules developed inside the PLCverif environment.
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pub l i c Ana l y s i sR e s u l t I t em c a s e I f S t a t em e n t ( f i n a l I f S t a t em e n t e ) {

f i n a l Stream <EObject > a l l D e s c e n d a n t s =

S t r e amSuppo r t . s t r e am ( He lpe r . i t e r a b l e ( e . eA l lCon t e n t s ( ) ) . s p l i t e r a t o r ( ) , f a l s e ) ;

f i n a l long d e s c e n d a n t I f s = a l lD e s c e n d a n t s . f i l t e r (

x −> x i n s t a n c e o f I f S t a t em e n t ) . coun t ( ) ;

i f ( d e s c e n d a n t I f s > 0) {

re turn n u l l ;

}

f i n a l long a n c e s t o r I f s = EmfHelper . g e tA l lA n c e s t o r s ( e ) . s t r e am ( ) . f i l t e r (

x −> x i n s t a n c e o f I f S t a t em e n t ) . coun t ( ) ;

i f ( a n c e s t o r I f s >= MAX_IF_DEPTH) {

re turn p a r am e t e r i z e dAn a l y s i s R e s u l t I t em ( e ,

P l c v e r i f S e v e r i t y . Warning , "Too␣ deep ␣ IF ␣ s t r u c t u r e ␣ ( dep th : ␣%s ) " , a n c e s t o r I f s + 1 ) ;

}

re turn n u l l ;

}

Figure 5: Deeply nested conditional if statements rule.

Future work

In the near future, we will continue the activities to im-

prove the quality of our programs, both with model checking

and static analysis using the PLCverif environment. For sta-

tic analysis, we will continue advancing in the AST-based

analysis by adding new and more complex rules and we will

evaluate the possibilities of adding different static analysis

techniques to PLCverif.
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