
WHAT IS SPECIAL ABOUT PLC SOFTWARE MODEL CHECKING?
D. Darvas∗, E. Blanco Viñuela, CERN, Geneva, Switzerland

I. Majzik, Budapest University of Technology and Economics (BME), Budapest, Hungary

Abstract
Model checking is a formal verification technique to check

given properties of models, designs or programs with math-
ematical precision. Due to its high knowledge and resource
demand, the use of model checking is restricted mainly to
core parts of highly critical systems. However, we and many
other authors have argued that automated model checking of
PLC programs is feasible and beneficial in practice. In this
paper we aim to explain why model checking is applicable
to PLC programs even though its use for software in general
is too difficult. We present an overview of the particularities
of PLC programs which influence the feasibility and com-
plexity of their model checking. Furthermore, we list the
main challenges in this domain and the solutions proposed
in previous works.

INTRODUCTION AND MOTIVATION
The promise of model checking is to provide precise,

mathematically sound means to check the satisfaction of
given requirements on models, representing for example
software. Although some tools are available (e.g. CBMC1

[1], BLAST2, Bandera3 [2], DIVINE4 [3]), it is still difficult
to use model checking on real-sized software in practice.
One of the bottlenecks is the verification performance, the
excessive need of resources for the successful verification.

Besides checking software written in general-purpose pro-
gramming languages (e.g. C, C++, Java), active research can
be observed focusing on PLC (Programmable Logic Con-
troller) programs specifically. It has been studied by dozens
of research groups over the last 20 years [4]. However, model
checking is still far away from being easy-to-use or part of
the state of the practice of PLC program development.
The reader may ask the question: what is the reason for

targeting PLC model checking specifically? What makes
this domain special and why there is a need for specific
tools? What makes PLC model checking different from ver-
ifying general-purpose programs? This paper is dedicated
to the specificities of PLC programs, which facilitate their
verification, or contrarily, make the model checking more
difficult. Our aim is to summarise our experience with PLC
software model checking that we have acquired during the
development of PLCverif [5], and to help formal verification
researchers to specialise in this field, or to make their model
checker tools applicable to the PLC program verification
domain too.

∗ Corresponding author. E-mail: ddarvas@cern.ch
1 http://www.cprover.org/cbmc/
2 http://cseweb.ucsd.edu/~rjhala/blast.html
3 http://bandera.projects.cs.ksu.edu/
4 http://divine.fi.muni.cz/

The paper first overviews the difficulties and advantages
arising from the domain specificities. Then the syntactic
and semantic particularities of PLC programs are discussed.
Finally, the need for environment modelling is mentioned.
An extended version [6] of this paper is also available

which contains more details and example programs.

DOMAIN SPECIFICITIES
Many of the differences between the general-purpose and

PLC programming languages, but also between the avail-
able verification methods originate from the differences in
the respective domains. Therefore, we start by overview-
ing the most important properties and specificities of the
PLC domain which influence the formal verification of PLC
programs.

Medium Criticality
Except for trivial programs, it is difficult to imagine and

prove absolute correctness or safety, just as absolute secu-
rity. Instead of pursuing those ideals, a more pragmatic
approach is needed: the verification costs and the risks of
failure should be in balance. Formal verification is already
often used where the cost of failure is exceptionally high:
in case of highly critical systems (e.g. nuclear, railway or
avionics systems) or systems produced in high quantities
(e.g. microprocessors). Even the methods requiring special
knowledge and lots of resources may be affordable in those
cases. Contrarily, in case of systems with low criticality,
deep analysis may not be required.
PLC systems are in the middle of this criticality scale:

their criticality is often not high enough to afford an indepen-
dent, specially skilled verification team. However, a poten-
tial failure or outage may cause significant economic losses,
motivating a sound and detailed verification approach.

Consequence PLC model checking approaches should
be easily accessible, specifically targeting the PLC domain,
without requiring unaffordable resources or having an exces-
sive cost compared to the level of criticality.

Advantage: Simple Operations and Data Structure
In general, the functionality of PLC programs is simpler

than most programs written in C or Java. PLC programs do
not deal with graphical interfaces, large data structures; they
do not create files, do not perform complex operations. All
these features may complicate the software model checking.

Consequence The simplicity of the programs makes
model checking more feasible computationally. This makes
the PLC domain a good target for formal verification.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA159

Software Technology Evolution
THPHA159

1781

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Difficulty: Variety of PLC Languages
PLCs use special languages, not used outside this domain.

Furthermore, there is a wide variety of PLC programming
languages. IEC 61131, the relevant standard [7] defines
five different languages: Structured Text (ST), Instruction
List (IL), Function Block Diagram (FBD), Ladder Diagram
(LD) and Sequential Function Chart (SFC). Furthermore,
each vendor provides their own flavour, with minor or major
differences compared to the standard. Siemens PLCs typi-
cally support Structured Control Language (SCL), Statement
List (STL), Function Block Diagram (FBD), Ladder Logic
(LAD), and S7-GRAPH, which correspond to the previously
listed standard languages, respectively. The difference be-
tween some of them is minor (e.g. between LAD and LD),
but in other cases it is very significant (e.g. between STL
and IL or SCL and ST).

Consequence As PLC programs can mix these lan-
guages (e.g. a function written in FBD can call a function
written in SCL), each language should be supported by a
PLC program verification tool. Furthermore, as there are
common parts in those languages (e.g. variable declara-
tions), the language infrastructure of the verification tool
(parser and program representation) should be generic and
reusable.

Difficulty: Different Background Knowledge of
Developers

General purpose programming languages, their develop-
ment environments and verification tools are typically de-
veloped “inside the community”: by software engineers,
for software engineers. PLC programs, however, are often
written by people with different skills and background knowl-
edge: automation engineers, technicians, etc. The theory
and practice of formal verification is often not part of the
general curriculum of software engineers, making the ap-
plication of model checking hard. This knowledge gap is
even bigger and more severe in case of the PLC program
developers.

Consequence Special attention should be paid to bridge
the semantic gap between the user and the verification tool.
The tools should use inputs and outputs which are close
to the users’ domain. For example, the PLCverif tool [5]
uses the PLC programs and requirement patterns based on
English sentences as inputs, and the outputs are provided in
an easy-to-understand, self-contained form, using concepts
directly from the PLC domain.

SYNTAX OF PLC LANGUAGES
As mentioned earlier, PLC programs are written using a

wide variety of programming languages. Since—according
to their claims—Siemens is a market leader in the field of
automation, we mainly focus on the languages supported
by Siemens S7 PLCs, especially the high-level Structured

Control Language (SCL), which is a variant of the Structured
Text (ST) language defined in IEC 61131 [7].

In this section, we show that although the PLC programs
are simpler, their syntax may actually be more complex than
that of general-purpose programs.

Difficulty: Complex Syntax
PLC programming languages—especially their Siemens

variants—often have richer and more complex syntax than
general-purpose programming languages supported by soft-
ware model checkers. For example, C (the C99 version)
contains 6 basic data types with built-in support5, Java con-
tains 9, but SCL contains 16 base types, which was extended
to 30 in the new version of the language supported by the
new development environment (TIA Portal) and the new
hardware (e.g. S7-1500).

Consequence Development of the language infrastruc-
ture for PLC software model checking needs a lot of effort.
As there is no good, reusable language infrastructure avail-
able, the entry cost of PLC program verification is high.

Difficulty: No Precise Syntax Definition
The well-established general-purpose languages typically

have precisely, often formally defined syntax. For exam-
ple, the syntax of C is standardized by ANSI, ISO and IEC
(ISO/IEC 9899), C# is defined by the ECMA-334 standard.
The Java syntax is not standard, but a detailed specification
is provided by Oracle. The syntax of standard PLC pro-
gramming languages are defined in IEC 61131 (with some
ambiguities [8, 9]). However, having a precise definition for
the vendors’ flavours is not always easy. Siemens provided
syntax definition for SCL version 5.3 [10] and for STL [11],
which cover most, but not all aspects. The authors are not
aware of any precise syntax description of the new version
of SCL, supported by the new development environment,
TIA Portal.

Consequence As the available syntax definitions are
partial or too vague, the only way to determine the precise
syntax is through systematic trials with the compilers. Cre-
ating precise descriptions for the most commonly used PLC
programming languages and open source, generic parser
implementations could facilitate new researchers to focus
on the PLC domain and also to focus the research efforts on
the verification challenges.

Difficulty: Absolute and Symbolic Addressing
Each Siemens PLC program contains an editable symbol

table, which assigns names (“symbols”) to memory locations
or program units. This allows to use symbolic addressing, i.e.
using names instead of absolute addresses. However it is pos-
sible (although considered as bad practice) to mix absolute
5 Here we not only consider the basic numeric types of C, but also
strings. Even though a C string is simply a character array, there
is dedicated language-level support for string constants (e.g. “var =
"teststring";”).

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA159

THPHA159
1782

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



and symbolic addresses. For example, “var1 := TRUE;”,
“"var1" := TRUE;”6 and “M4.1 := TRUE;” can have the
same meaning if there is a symbol var1 defined for the
memory location M4.1.

Consequence In order to support real PLC applications,
besides supporting the five languages, the symbol tables shall
be supported too. The verification tools should be able to
handle the mix of absolute and symbolic addresses, or at
least warn the user when an object is referred to using several
names.

Difficulty: Permissive Grammars
An additional challenge to be faced when developing the

PLC language infrastructure is the permissivity of the gram-
mars. For example, there are at least six syntactic ways to
refer to a given bit in the bit memory area: absolute access
(e.g. M4.1, %MX4.1; the % and X are optional) and indexed
access (e.g. M[4,1]). Furthermore, symbolic access is also
possible, as mentioned before.

Consequence The language infrastructure should have
a uniform internal representation to hide these redundant
details and simplify the verification task.

Difficulty: Context-dependent Grammar
Another challenge in PLC software model checking arises

from the context dependent nature of the programming lan-
guages. For example, in the STL language “A A;” is a valid
statement, where the first “A” stands for “AND operation”,
and the second “A” denotes a Boolean variable with name
“A”.

Consequence These features of the language have to be
taken into account when choosing the technology for the lan-
guage infrastructures. For example, a parser that identifies
the keywords first—independently from the context—cannot
successfully parse a program written in STL due to the men-
tioned ambiguities, or certain workarounds are required7. It
also poses a challenge to provide a single, unified parser for
SCL and STL.

SEMANTICS OF PLC LANGUAGES
Not only the syntax of PLC programs is rich, their seman-

tics (i.e. the description how the programs behave during
execution) may also impose additional challenges compared
to formal verification of general-purpose programs.

PLC Execution Semantics
To provide verification for PLC programs, first the key

semantic differences between general-purpose programs and
PLC programs have to be understood.
6 The quotation marks denote that var1 is a symbol, however in SCL v5.3
they can be omitted if it does not cause any confusion.

7 Such workaround for Xtext is in https://blogs.itemis.com/en/
xtext-hint-identifiers-conflicting-with-keywords.

PLC programs are typically executed cyclically. A cycle
(so-called scan cycle or PLC cycle) consists of (1) sampling
the physical inputs (and keeping their values stable in the
memory), (2) executing the user code, (3) assigning the
computed outputs to the physical outputs. This allows to
have consistent input and output signals.
In Siemens PLCs, the scan cycle can be interrupted.

Cyclic interrupts ensure the periodic execution of a certain
piece of code. Diagnostic and error handling interrupts can
also be defined. The interrupts and various operating system
tasks (e.g. communication) can alter the length of the scan
cycle. If the scan cycle exceeds the predefined length, an
error-handling block will be executed.
There is a difference in the programming concepts too.

Even though the latest IEC 61131 standard introduced object-
oriented programming for PLCs, most programs still use
functions and function blocks. A function block is a stateful
function, the values of its variables (except for the temporary
variables) are kept even after the execution of the block. The
semantics of a function block is similar to a class that has a
single member method in object-oriented languages.

Advantage: Simple Memory Handling
The formal verification of PLC programs is greatly facil-

itated by its simple memory handling. PLC programs use
static typing: variables are declared explicitly, with a given
type. Variables are strongly typed: except for some safe
cases, explicit type conversions are required between the
different data types. However, it has to be noted that SCL
permits the use of the special data type ANY which can store
a reference to any data type.
There is no dynamic memory allocation in PLC pro-

grams, all variables and data blocks are allocated statically,
at compile-time.

Furthermore, in high-level PLC programming languages
(e.g. SCL) pointers are rarely used. In lower-level languages
(e.g. STL) pointer usage is sometimes unavoidable. How-
ever, even without using pointers explicitly, semantically
equivalent constructs may be present. For example, IB[10]
denotes the value of byte 10 in the input memory area. If the
IB array is indexed with a variable (IB[var1]), then var1
practically behaves as a pointer.

Consequence Due to simple control structures and the
lack of dynamic memory allocation, many popular model
checkers, e.g. NuSMV or UPPAAL can efficiently be used
to verify most of the PLC programs. To support all PLC
programs, pointer support is required on the verification
side.

Difficulty: Imprecise Semantics Definition
Having a precise, formal semantics for the input models is

an obvious requirement for model checking. Unfortunately,
there is nomathematically sound semantics definition neither
for the IEC 61131 languages, nor for the Siemens PLC lan-
guages. Some reference manuals are available for SCL [10]

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA159

Software Technology Evolution
THPHA159

1783

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



and STL [11], but they are in some places ambiguous, im-
precise or incorrect. For example, the SCL description does
not define precisely the semantics of CASE statements, or
the STL description incompletely and sometimes incorrectly
defines the behaviour of the nesting stack used for complex
Boolean operations.

PLC programs depend on a library of basic functions and
function blocks, such as timers, data transmission blocks,
special memory operations. Precise description (either for-
mal definition or source code) is required for these program
units too for the verification, but it is often not available.

Consequence Developers of PLC verification tools can-
not fully rely on the provided language descriptions and doc-
umentation. Systematic, rigorous experiments have to be
conducted in order to explore the precise semantics of the
different PLC program structures.

No Short Circuit Evaluation
The IEC 61131 standard permits the short-circuit eval-

uation for logic expressions, i.e. the evaluation can be in-
terrupted as soon as the result can be determined. How-
ever, our experiments showed that Siemens PLC programs
do not use short circuit evaluation. For example, in case
of the “func1() OR func2()” expression the function
func2 will be called even if the return value of func1 is
true (thus the expression will be evaluated to true inde-
pendently from func2).

Consequence This may facilitate the representation of
PLC programs as control flow graphs.

Difficulty: Timed Behaviour
PLC programs often involve time-related behaviour, typ-

ically by using the timers defined in [7] (TP, TON, TOF).
Accurate modelling and verification requires precise repre-
sentation of time, which might make the verification task
extremely difficult. In reality, PLC timers rely on the PLC’s
real time representation. The elapsed time between two
timer calls depends on the cycle time, which in turn relies on
the executed methods, the precise type of the hardware, the
communication between the PLC and other systems, etc.

Consequence The verification tool should use an ap-
propriate time representation, i.e. an appropriate trade-off
between precision of modelling and needed resources. One
possibility is to simplify the physical time handling and
assuming that each PLC cycle takes a non-deterministic
amount of time, and the global time is incremented by this
value at the end of the cycle at once. Then effectively the
time does not elapse during a PLC cycle, which may alter the
behaviour of the timer blocks, but this was often found to be
an acceptable trade-off. This representation may lead to false
negatives, i.e. omitted faults. Other time representations
could cause false positives (false error reports). The conse-
quences of the chosen time representation shall be clearly

described for the user, using the terminology of the PLC
domain.

Difficulty: Semantics Depending on the Compiler
and Hardware Version
The precise semantics of PLC programs may depend on

various compiler settings, the used compiler and the hard-
ware.

• Certain data types and languages are available only
using certain hardware.

• The precise semantics of the programming languages
depend on the development environment.
Example. Let D be a variable of type DINT (32 bit
signed integer). Using the STEP 7 V5.5 development
environment, the execution of the SCL assignment “D
:= INT#1 + 50000” will result in D =50001 (where
“INT#1” denotes a 16 bit signed integer). However,
the same code compiled using the TIA Portal devel-
opment environment will result in D =–15535 on the
same hardware due to the differences in typing rules.

• The behaviour depends also on the semantic settings.
For example, some details of the SFC execution can be
modified.

• The hardware configuration and the interrupt config-
uration can also influence the precise semantics of a
given PLC program. Furthermore, this information is
not included in the source code.

Consequence Different semantic variants of PLC lan-
guages shall be supported, and the user shall be able to
choose the appropriate one for each program under verifica-
tion.

Difficulty: Bit-level Memory Manipulation
PLC programs allow various low-level memory manipu-

lations.
• Integer variables can also be treated as bit arrays by
using explicit type conversion operators. The same
behaviour is also possible by defining so-called views,
practically declaring multiple variables mapped to the
same memory location using the keyword AT in SCL.

• It is also possible to directly address a specific area in
the memory (absolute addressing), independently from
the variable borders. For example, DB1.DW3 refers
to the WORD starting at byte 2 in the data block DB1.
However, this memory location may represent several
variables, or parts of different variables.

Consequence The verification tool should either pro-
vide accurate, low-level representation of the PLC memory
model (causing a high overhead), or at least provide static
analysis methods to check situations where such advanced
memory representation is required to check the PLC program
under verification.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA159

THPHA159
1784

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



ENVIRONMENT
Challenge: Environment Model
PLCs are mainly used for process control tasks, there-

fore they inherently interact with their environment. It is
reasonable to check certain safety properties (i.e. a given
property is always satisfied, no matter what are the input
sequences) without considering the environment during ver-
ification. However for other types of requirements having
no assumption on the environment may lead to many false
positives, i.e. non-satisfied requirements where the violation
is practically impossible.

Consequence To get practical, usable verification re-
sults, the model of the environment needs to be incorporated.
This can exclude cases where for example only a physically
impossible change in the controlled process could cause the
signalled violation. In our opinion, there are three main
challenges related to the environment models, as follows.

• It is difficult to find appropriate formalisms and to de-
scribe the environment (e.g. the controlled process)
precisely.

• Including the environment model may significantly in-
crease the computation resources required for model
checking.

• An imprecise environment or process model may lead
to false negative results, i.e. it can lead to the omission
of real problems.

There are various attempts to precisely describe environ-
ment or process models and include them in various ver-
ification procedures [12–14], however, we think that this
still remains one of the greatest challenge in PLC model
checking.

Challenge: Fault Assumptions
It is important to keep in mind that the input variables

of the PLC programs often represent physical inputs. It is
unrealistic to assume that all inputs are always correct. In
other words, the “no failure” assumption in the environment
model during verification may hide potential problems. The
other extreme—assuming that everything can fail at the same
time—may be unrealistic too, leading to useless counterex-
amples which undermines the usability of the method.

Consequence The environment models shall be able
to incorporate various assumptions. For example, a single
failure hypothesis may be rational in some cases, but in other
cases including the simultaneous failure of certain dependent
signals in the verification may be desired too.

OUR RESPONSE: PLCverif
To overcome most of these challenges and to provide

feasible, easy-to-use formal verification for PLC programs,
CERN started the development of PLCverif [5]. With the on-
going development of PLCverif we aim to provide a generic

tool and language infrastructure that can make the develop-
ment or integration of new verification methods to the PLC
domain significantly easier.

PLCverif hides the formal verification-related details from
the user. Also, as it relies on a control flow graph-based
intermediate representation that is independent from the
PLC programming languages, this tool can hide many of
the syntactic and semantic peculiarities of the PLC domain
from the (formal) verification solutions.
Recognizing that the listed particularities make the de-

velopment of any verification method challenging for PLC
programs, PLCverif is opening towards supporting other
verification techniques besides model checking, for example
static code analysis and unit testing.
Although we have overcame many syntactic and seman-

tic problems—except the ones which would have required
unreasonable amount of resources compared to their per-
tinence, such as properly supporting pointers—, the lack
of proper environment modelling limit the use of PLCverif
to well-defined, isolated parts of PLC applications, such as
individual function blocks or safety logic implementations.

CONCLUSION
In this paper many of the specific challenges of model

checking PLC programs have been presented, as well as the
features of those programs which can facilitate their formal
verification. We believe that PLC model checking is still
a research field with a lot of industrial attention and with
many unsolved challenges.

On one hand, PLC program verification is an ideal target
for model checking due to the medium criticality and the
relatively simple programs.

On the other hand, syntax and semantics of PLC programs
are complex, which makes it difficult for non-PLC experts
to contribute to verification, as the knowledge and develop-
ment effort required for PLC program verification is high.
Open source, reusable language infrastructures could lever-
age this challenge, allowing to focus on the challenges of
performance and clarity of results. We need a bridge not only
between formal verification and the PLC developer commu-
nity, but also between the formal verification researchers
and the industrial control systems domain. Furthermore,
environment modelling is still a big challenge to be solved,
which could significantly improve the practical applicability
of model checking for PLC programs.

REFERENCES
[1] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking

ANSI-C programs,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems, ser. LNCS, vol. 2988. Springer,
2004, pp. 168–176.

[2] J. Hatcliff and M. Dwyer, “Using the Bandera tool set to
model-check properties of concurrent Java software,” inCON-
CUR 2001 — Concurrency Theory, ser. LNCS. Springer,
2001, vol. 2154, pp. 39–58.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA159

Software Technology Evolution
THPHA159

1785

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



[3] J. Barnat et al., “DiVinE 3.0 – An explicit-state model checker
for multithreaded C & C++ programs,” in Computer Aided
Verification, ser. LNCS. Springer, 2013, vol. 8044, pp.
863–868.

[4] T. Ovatman, A. Aral, D. Polat, and A. O. Ünver, “An overview
of model checking practices on verification of PLC software,”
Softw. Sys. Modeling, vol. 15, no. 4, pp. 937–960, 2016.

[5] D. Darvas, B. Fernández, and E. Blanco, “PLCverif: A tool
to verify PLC programs based onmodel checking techniques,”
in Proc. 15th Int. Conf. on Accelerator and Large Experimen-
tal Physics Control Systems. JACoW, 2015, pp. 911–914.

[6] D. Darvas, E. Blanco, and I. Majzik, “What is special about
PLC software model checking? – Extended version,” CERN,
Report EDMS 1851093, 2017, in press. [Online]. Available:
http://edms.cern.ch/document/1851093

[7] IEC 61131-3 Programmable controllers – Part 3: Program-
ming languages, IEC Std., 2003.

[8] M. de Sousa, “Proposed corrections to the IEC 61131-3 stan-
dard,” Computer Standards & Interfaces, vol. 32, no. 5-6, pp.
312–320, 2010.

[9] M. de Sousa, “Ambiguities in IEC 61131-3 ST and IL expres-
sion semantics,” in 13th IEEE International Conference on
Industrial Informatics. IEEE, 2015, pp. 1312–1317.

[10] Siemens, S7-SCL V5.3 for S7-300/S7-400, 2005. [Online].
Available: http://support.industry.siemens.com/cs/document/
5581793

[11] Siemens, Statement List (STL) for S7-300/S7-400 Program-
ming, 2006. [Online]. Available: http://support.industry.
siemens.com/cs/document/18653496

[12] B. Bradu, P. Gayet, and S. Niculescu, “Modeling, simulation
and control of large scale cryogenic systems,” in Proc. 17th
IFAC World Congress, 2008, pp. 13 265–13 270.

[13] S. C. Park, C. M. Park, G. N. Wang, J. Kwak, and S. Yeo,
“PLCStudio: Simulation based PLC code verification,” in
Proc. 2008 Winter Simulation Conf., 2008, pp. 222–228.

[14] J. Nellen, E. Ábrahám, and B. Wolters, “A CEGAR tool
for the reachability analysis of PLC-controlled plants using
hybrid automata,” in Formalisms for Reuse and Systems Inte-
gration, ser. ASIC. Springer, 2015, vol. 346, pp. 55–78.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA159

THPHA159
1786

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution


