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Abstract
The CERNUNified Industrial COntrol System framework

(UNICOS) with its Continuous Control Package (UNICOS-

CPC) is the CERN standard solution for the design and

implementation of continuous industrial process control ap-

plications. The need of adapting the framework capabilities

to the different processes at CERN has brought new chal-

lenges. Reacting as fast as possible to an interlock situation

to protect equipment is a new requirement which has been

introduced in UNICOS-CPC.

This paper presents the challenges, design and test results

of the seamless integration of fast interlocks capabilities in

the current UNICOS-CPC package based on conventional

PLCs (Programmable Logic Controllers), with a heightened

level of flexibility and maturity. The first implementation is

employing SIEMENS PLCs but the underlying technique is

extensible to the other UNICOS-CPC compliant platforms.

INTRODUCTION
UNICOS is a CERN framework to develop industrial

control applications and UNICOS-CPC is the framework

package devoted to continuous process control. It provides

developers with means to design and develop full control

applications and operators with ways to interact with all

items of the process. In addition UNICOS-CPC offers a

suite of tools at the supervision level to diagnose the process

and the control system itself. [1]

The methodology to develop process control applications

proposed by UNICOS-CPC is based on the model provided

by the ISA-88 standard for batch control systems. The ba-

sis of these standards embraces the methodology known as

"Modular Functions", which supports multi-use instances

to minimize and simplify the coding. The standard defines

a hierarchy of objects that standardize the interaction be-

tween the layers, thus simplifying the overall system. These

objects are classified according their functionality (i.e. In-

put/Output, Interface, Field and Control Objects) and are

used as a common language by process engineers and control

system programmers to define the functional specification

of the process control.

In addition to the method, offline tools have been pro-

duced to automate the instantiation of the objects in both

supervision and process control layers, and generate the

Programmable Logic Controller (PLC) programs.

The UNICOS-CPC package can be deployed to different

platforms. For the control layer, Siemens and Schneider

PLCs are supported together with controllers compatible

with Codesys development environment. At the supervi-

sion layer, the Siemens Supervisory And Data Acquisition

(SCADA) WinCCOA is used and it also includes a full li-

brary for Siemens and Schneider local operator panels.

Fast Interlocks
Fast interlocks are defined as critical events in the process

that require detection, evaluation and a response by the con-

trol system in a time window that cannot be achieved by a

standard PLC application. They are used to set the equip-

ment under control in a safe state in response to an abnormal

situation. In addition to evaluating and responding to those

events, it is necessary to provide an accurate time stamp of

the event which will be used to diagnose the root cause.

TSPP
The Time Stamp Push Protocol (TSPP) is an event driven

communication protocol for process control. TSPP provides

both, optimized data transfer from the PLC to the SCADA

and time-stamped data at source.

The protocol detects data changes, associates the time

stamp and then sends it in a single telegram. The time stamp

allows better diagnostic capabilities than classic polling data.

TSPP is designed to send three distinct types of time

stamped data: Events (Boolean changes in the state of the

UNICOS-CPC objects), Status (analogue changes of the

objects) and Watchdog (connection alive message). The

three types of TSPP data buffers are managed in parallel but

only one send-channel is used. To manage this mechanism,

a first in – first out (FIFO) queue has been designed.

Events are individually time-stamped, buffered and then

sent to the SCADA, which allows a comprehensive event

analysis in case of failure. However, statuses are time-

stamped in blocks and sent to the data server without buffer-

ing, therefore only the most recent status values are ensured.

On Siemens PLCs the protocol is implemented using a

standard S7 communication function, BSEND, which sends

large amounts of data to the SCADA layer (WinCC OA).

CRITICAL EVENT DETECTION
The UNICOS-CPC standard application time granularity

is the one imposed by the PLC sampling time, which depends

mostly on the application size. In general, the PLC sampling

time does not comply with the fast interlocks time require-

ments. Two implementation solutions for the detection of

critical events have been evaluated.

Hardware Interrupts
The hardware catalog of Siemens provides a set of input

modules with hardware interrupt capabilities, a program

which is adapted to suit the event can be called in real time.

If an alarm-triggering event occurs during the main PLC

program processing, the operating system calls the alarm
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OB 40, interrupting the processing of the program cycle or

lower-priority program blocks. The alarm-triggering event

is specified more precisely via the alarm OB 40 temporary

local data which can be evaluated by the user program in the

alarm OB. This functioning principle is shown in Fig. 1.

Figure 1: Hardware Interrupt execution.

Cyclic Interrupts
Siemens CPUs provide cyclic interrupt OBs that interrupt

the cyclic program processing at certain intervals. Each of

the available cyclic interrupt OBs has a default interval that

becomes effective when the cyclic interrupt OB assigned

to it is loaded into the CPU. The equidistant start times of

the cyclic interrupt OBs are determined by the interval and

the phase offset. The user must make sure that the run time

of each cyclic interrupt OB is significantly shorter than its

interval otherwise in case a cyclic interrupt OB has not been

completely executed before it is due for execution again, a

time error OB will be started.

This implementation relies on a periphery update during

the execution of the cyclic interruption in order to achieve

the detection of the critical events. As opposed to the previ-

ous implementation based on hardware interrupts, the cyclic

interrupts cannot ensure a fixed time window for the event

detection but a maximum time window based on the cyclic

interrupt interval set by the user. The event will be detected

at the next cyclic interruption execution. In general the mini-

mum interruption interval available is 1 ms. The functioning

workflow is shown in Fig. 2.

If the input (I) and output (Q) address areas are accessed

in the user program, the program does not scan the signal

states on the digital signal modules but accesses a memory

area in the system memory of the CPU and distributed I/Os.

This memory area is known as the process image. One of

the internal tasks of the operating system (OS) is to read

Figure 2: Cyclic Interrupt execution.

the status of inputs into the process image input table (PII).

Once this step is complete, the user program is executed

with all blocks that are called in it. The cycle ends with

writing the process image output table (PIQ) to the outputs

for the modules. Reading in the process image input table

and writing the process image output table to the outputs for

the modules is all independently controlled by the operating

system.

For either of the two solutions (hardware or cyclic inter-

rupts) introduced in this paragraph, the inputs and outputs

readout update corresponding to the signals related to the

event detection (inputs) and the control system response

(outputs) need to be treated during the execution of the in-

terruption. A mechanism to update first the inputs at the

interruption execution and then the outputs after the evalua-

tion of the event is necessary in order to minimize the overall

reaction time applied to the execution chain: inputs readout,

evaluation and output to the process. In order to achieve

this purpose, three implementations have been studied and

identified for Siemens PLCs.

Process Image Update
Using the system functions SFC 26 "UPDAT_PI" (update

inputs process image) and SFC 27 "UPDAT_PO" (update

outputs process image) it is possible to update the OB1 pro-

cess input/output image or a process input/output image

partition previously defined. Time needed for the process

image transfer depends on the CPU used. The updating of

the OB1 process image input table and the process image

input sections that are assigned to an interrupt OB is not

influenced by SFC 26 calls. In Fig. 3 the time needed for

the CPU 31x is shown.
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Figure 3: Process image transfer time for CPU 31x. [2].

Process Image Partition
As an alternative to having the process image (process-

image input table, PII, and process-image output table, PIQ)

automatically updated by the operating system, inputs and

output addresses can be assigned to a partial process images

(PIP). Each PIP can contain multiple IO addresses or module

assignments although it can only be assigned to a unique OB.

Input and output addresses, which have been assigned to a

process image partition, no longer belong to the OB1 process

image of the inputs and outputs. All the input and output

addresses can only be assigned once for the OB1 process

image and for all the process image partitions. The behavior

described applies to the S7-400 and to some S7-300 CPU

modules like CPU317 and CPU319. The CPU modules S7-

317 and S7-319 support the process image partition only

with the OB61 and not with the other alarm OBs. The

number of process image partitions available depends on the

CPU used.

Peripheral Addressing
If access is made to the inputs and outputs via the operands

"I" or "Q" in the user program, then there is no direct ac-

cess to the input-output modules. In this case, access is

made to the process image of the inputs (PII) and the pro-

cess image of the outputs (PIQ). The contents of PII and

PIQ do not reflect the actual values of the inputs/outputs,

but the values at the time the process image was updated.

Whenever more recent values at the interruption execution

are required, direct peripheral addressing is also possible.

In addition I/O addresses outside the process image to the

inputs and outputs of I/O modules can be assigned and must

be accessed via "Peripheral addressing" and therefore it is

always ensured that the actual value is read immediately or

an output is implemented immediately. To represent this in

the user program a "P" in front of the area of the address to

be addressed shall be set. An important drawback to note is,

direct access to a peripheral address involves a much higher

access time than access to the process image, as shown in

Fig. 4. In addition, access is restricted to byte, word and

double word data types, thus addressing of any individual

peripheral bits is not possible.

IMPLEMENTATION
In regards to the critical event detection solutions depicted

in the previous chapter, both solutions are based on inter-

rupts (hardware or cyclic). Hardware interrupts present a

Figure 4: Typical execution time in μs for a byte load instruc-

tion using process image or peripheral addressing in CPU

31x. [3].

streamlined event detection mechanism although it requires

a specific set of hardware modules, whereas the cyclic in-

terrupt performance is lower. The process image update

required at the interrupt execution has been implemented

using the peripheral addressing due to its better performance

compared to the alternative solutions studied.

UNICOS-CPC Integration
The integration of fast interlocks functionality into the

UNICOS-CPC framework is based on the execution in the

interrupt OB (cyclic or hardware interrupt) of the UNICOS-

CPC objects instances involved in the interlock chain (de-

tection, evaluation and reaction). This chapter describes the

object types than can be part of the interlock chain, together

with the issues found at the implementation phase.

UNICOS-CPC Objects
Among the objects composing the UNICOS-CPC object

types library, those shown in Figure 5 have been defined as

conforming with a fast interlock execution chain according

to the UNICOS-CPC model. The user must build the chain

composed by a minimum of one instance of each object type

in the list.

• DI: The Digital Input object type connects the input

periphery to the PLC application.

• DO: The Digital Output object type connects the PLC

application to the output periphery.

• DA: The Digital Alarm object type indicates the in-

terlock and propagates the alarm to the OnOff object

type.

• OnOff: The OnOff object type evaluates the interlock

logic conditions and connects the interlock to the out-

put.

Figure 5: Fast interlock chain of UNICOS-CPC objects.
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Consistency
One of the typical issues to be handled when using in-

terrupts is the inconsistency of the data used at the main

program execution and the interrupt execution. The data

shared by both programs (main and interrupt) need to be

identified and measures have to be considered to avoid in-

consistencies that could jeopardize the functionality of the

system. Peripheral addressing is a good example of this

issue.

The peripheral addressing of inputs and outputs is re-

stricted to bytes as the minimum unit of information. In

order to avoid data consistency issues when updating the

periphery image, only the input bits involved in the fast

interlock chain corresponding to the Digital Input Objects

must be updated. To serve this purpose a mechanism has

been implemented for which the input byte corresponding

to the relevant input bits of the interlock chain is stored in

an internal variable. The fast interlock input bits are then

identified in the periphery byte and copied back to the initial

input image byte. In this way, the input image bytes updates

only the relevant bits related to the fast interlock Digital

Inputs involved in the fast interlock chain. The mechanism

implemented is shown in Figure 6.

Figure 6: Peripheral input byte treatment.

Concurrency
The treatment of the fast interlocks implies the execution

of object instances and additional shared resources during

the interrupt execution, which generally occur during the

execution of the main program OB (OB 1). In this context

and considering that interrupts can be executed at any time

during the OB1 execution, the access to those shared re-

sources must be handled to prevent unexpected misbehavior

of the program, thus a mechanism to synchronize the access

to those resources has been implemented.

The mechanism is based on the use of two system func-

tions which allow the disabling of processing of new in-

terrupts of both synchronous and asynchronous interrupts

in such a way that the interrupts are only permitted in the

execution of the OB1 whenever concurrency issues are not

possible.

• SFC 39 "DIS_IRT" and SFC 40 "EN_IRT".

With these system functions it is possible to disable and

enable respectively the interrupts, such as hardware or

cyclic interrupts. While the interrupts are disabled, no

OB is triggered by an interrupt trigger occurrence.

• SFC 41 "DIS_AIRT" and SFC 42 "EN_AIRT"

With these system functions it is possible to disable

(until the end of OB execution or until re-enabling the

interrupts) and enable respectively the interrupts, such

as hardware or cyclic interrupts. Unlike SFC 39 and

SFC 40, interrupts triggered during interrupt disabled

period will be queued and executed once the interrupts

are enabled again.

UNICOS-CPC Objects Interactions
In general terms, as detailed in the previous paragraph,

the connection between objects instances used in the fast

interlock chain and the other objects instances may rise po-

tential concurrency and consistency issues. Thus, the final

object architecture of the control system for fast interlock

applications has been limited to the connections shown in

Figure 7.

Figure 7: Connection schema among the fast interlock ob-

jects chain and other objects.

In order to be able to evaluate a fast interlock alarm in the

standard execution processing of the program, the connec-

tion between the Digital Alarm object and the PCO (Process

Control Object) is allowed. On enabling this feature, some

parts of the instance execution are prevented against inter-

rupts using the aforementioned system functions, however,

after a deep analysis of the execution steps, consistency is-

sues may remain in the particular case of two or more PCO

instances connected to the same fast interlock digital alarm.

As a result, the connection between a Fast Interlock Digital

Alarm and a PCO is not advised even if it has not been dis-

abled for functionality purposes. If necessary it is advised to

use only one connection to a PCO. Several semantic check

rules have been included in the generation process to prevent

the user from misconfiguring the application.

TEST RESULTS
A test bench containing a standard UNICOS-CPC applica-

tion with a defined fast interlock chain has been established.

The code is executed by a Siemens S7 317-2 PN/DP CPU

(typical CPU processing times for: bit operations 0.025

μs, word operations 0.03 μs, fixed point arithmetic 0.04 μs,

floating point arithmetic 0.16 μs). The response time mea-

surements have been performed with an oscilloscope.
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Reaction time measurements have been taken for differ-

ent PLC cycle times. The CPU cycle time was modified

dynamically with a dedicated routine.

Standard Application
In general, the response time for an event (non-fast inter-

lock) should be observed to be between the PLC cycle time

and twice that value. In Figure 8, the theoretical response

time range is highlighted in grey and the results from the

test performed in a standard application are represented with

dots. As expected, the overall response time depends on

the cycle time of the PLC and does not exceed two cycles

execution time.

Figure 8: Response time for the standard object execution

(theoretical range in grey).

Hardware vs. Cyclic Interrupts
As designed, the response time for fast interlock is in-

dependent of the PLC cycle time, due to the fact that the

interrupt is always executed irrespective of the PLC run-time

status. For the hardware interrupt implementation, most tests

performed show an average response time of around 3 ms.

For the cyclic interrupt implementation, the results confirm

the expectations; the final response time is longer as the

interval of the cyclic interrupt (1 ms) must be added, obtain-

ing a response time that represents the values achieved for

the hardware interrupt plus the interval time of the cyclic

interrupt. In the Figure 9, maximum, minimum and average

response times of hardware interrupts and cyclic interrupts

vs PLC cycle time are represented.

Impact on PLC Cycle Time
The use of interrupts in general, and cyclic interrupts in

particular, has an impact on the overall execution perfor-

mance and therefore may cause an increase of the PLC cycle

time. In order to evaluate the impact of the cyclic interrupt

interval defined by the user, comprehensive tests have been

performed with multiple input bytes. The results show a

correlation between the increase of the total cycle time and

the reduction of the cyclic interrupt interval. In addition,

Figure 9: Response time for hardware and cyclic interrupts.

when the cyclic interval is significant compared to the total

cycle time, the impact of the cyclic interruption is negligi-

ble. Low cyclic interrupt intervals (e.g. 1 ms) ensure a fast

interlock response penalizing the system run-time perfor-

mance. As opposed to this, high cyclic interrupt intervals

(11 ms) reduce to the minimum the impact of the interrupt

on the system run-time performance, increasing the fast in-

terlock chain response times accordingly. The results are

represented in Figure 10.

Figure 10: Cycle time increase vs cyclic interval decrease.

Another interesting effect detected during the test phase

is the impact of the amount of fast interlock input bytes

readout processed by the interrupt routine, based on the

delays provoked by the periphery access. The overall PLC

cycle time increases due to the impact of the interrupt routine

which holds the periphery access. As a consequence, the fast

interlock response time is affected, increasing as expected

with the increase of input bytes readout. Figure 11 shows

the relation between cycle time increase and amount of fast

interlocks input bytes readout.
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Figure 11: Cycle time extension vs fast interlock bytes read-

out.

CONCLUSIONS
A synthesis of the analysis of the different possible solu-

tions together with a description of the main design chal-

lenges has been given. The test results confirm that the

seamless introduction of fast interlocks in UNICOS-CPC

provides a valuable new feature to cope with new challenges

in terms of fast reaction in protection equipment control

systems. Fully satisfactory reaction times irrespective of the

PLC cycle time are achieved based on hardware interrupts,

using appropriate hardware input modules and configuring

the hardware interrupts accordingly. An additional solution

based on cyclic interrupts provides a heightened level of

flexibility and a satisfactory compromise between response

performance and the simplicity of installation and config-

uration. With this feature, it is now possible to treat fast

interlock events in the UNICOS-CPC framework without

additional development by the end user. New control sys-

tems with demanding constraints on response time (typically

equipment protection control systems) can benefit from the

features provided by UNICOS-CPC in terms of program-

ming principle and methods, automatic code generation and

visualization capabilities at the supervision layer.
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