
APPLICATIONS OF KALMAN STATE ESTIMATION IN CURRENT  
MONITOR DIAGNOSTIC SYSTEMS* 

J. Hill, LANL/LANSCE, Los Alamos, U.S.A

Abstract 
Traditionally, designers of transformer-based beam cur-

rent monitor diagnostic systems are constrained by fun-
damental trade-offs when reducing distortion in time-
domain beam-pulse facsimile waveforms while also at-
tempting to preserve information in the frequency-
domain. When modelling the sensor system with a net-
work of linear time-invariant passive components, and a 
state-based representation based on first-order differential 
equations, we identify two internal dynamical states iso-
lated from each other by the parasitic resistance in the 
transformer windings. They are the parasitic capacitance 
voltage across the transformer's windings, and the trans-
former inductor current. These states are typically imper-
fectly observed due to noise, component value variance, 
and sensor component network topology. We will discuss 
how feedback-based Kalman State Estimation imple-
mented within digital signal-processing might be em-
ployed to reduce negative impacts of noise along with 
component variance, and how Kalman Estimation might 
also optimize the conflicting goals of beam-pulse facsimi-
le waveform fidelity together with preservation of fre-
quency domain information. 

CONTROL THEORY BACKGROUND 
Any linear time-invariant multi-input multi-output sys-

tem might be represented in a so-called state-space repre-
sentation [1], see equations 1 and 2. 

ሻݐሶሺݔ ൌ ሻݐሺݔܣ ൅ ሻݐሺݑܤ ൅  ሻ    (1)ݐሺ݀ܧ
ሻݐሺݕ ൌ ሻݐሺݔܥ ൅ ሻݐሺݑܦ ൅  ሻ   (2)ݐ௬݀ሺܧ

Where: 
 x(t) is a vector of dynamical system states 
 u(t) is a vector of system inputs 
 d(t) is a vector of system disturbances 
 y(t) is a vector of system outputs 

 ࢞ሶ ሺ࢚ሻ ∶ൌ
ௗ

ௗ௧

ሶ   ሻ࢚ሺ࢞

 A is a system dynamics matrix 
 B is an input scaling matrix 
 C is an output scaling matrix 
 D is an input feedthrough scaling matrix 
 E is a disturbance scaling matrix 
 ࢟ࡱis a disturbance feedthrough scaling matrix 

 
The A matrix determines the systems dynamical behav-

iour while the B, C, D, and E time-invariant matrices 
determine how the system interacts with its external envi-
ronment. A canonical form of the state-based representa-
tion has the main diagonal elements of the time-invariant 
A matrix populated with the system’s Eigenvectors and 

other elements zero. 
In control-theory a state-estimator is an auxiliary sys-

tem providing approximate values for internal variables 
of the target system using only measurements of inputs to, 
and outputs from, the target system. It is often possible to 
provide optimized system diagnostics, and also optimized 
system control, when enhanced estimates of the, often not 
directly measurable, internal states of the system are 
available. Equations (3) and (4) show the typical state-
space representation for an axillary model-based state 
estimator. The emphasis with state estimator design is to 
formulate matrix K for stable feedback minimizing error 
in equation (5), which must satisfy differential equation 
(6). 

ොሶݔ ሺݐሻ ൌ ሻݐොሺݔܣ ൅ ሻݐሺݑܤ ൅ ሻݐሺݕሺܭ െ  ሻሻ  (3)ݐොሺݕ
ሻݐොሺݕ ൌ ሻݐොሺݔܥ ൅  ሻ      (4)ݐሺݑܦ
݁ሺݐሻ ൌ ሻݐොሺݔ െ  ሻ       (5)ݐሺݔ
ሶ݁ ሺݐሻ ൌ ሺܣ െ  ሻ݁       (6)ܥܭ

A system is said to be state-observable if estimates for 
all internal states as time progresses can be provided 
contingent on knowledge of a model for the linear time-
invariant system, initial conditions for its states, history of 
system inputs, and history of system outputs. In control-
theory a necessary and sufficient condition for successful 
state-estimator design is that the rank of O in equation (7) 
based on the state-space representation of the target sys-
tem must be the same as the rank N of A. 

ܱ ൌ

ۏ
ێ
ێ
ێ
ۍ

ܥ
ܣܥ
ଶܣܥ

⋮
ےேିଵܣܥ

ۑ
ۑ
ۑ
ې

     (7) 

The so-called Kalman Filter [2] is a famous model-
based state-estimator feedback algorithm providing opti-
mized iterative estimates of system states in the presence 
of noise, and in the presence of other uncertainties such as 
imprecise target system model identification. Its algo-
rithm is proven to provide mathematically optimal state 
estimates when errors have known Gaussian stochastic 
distribution. The filter is implemented in two steps; first it 
produces current system state estimates along with their 
uncertainties, and second it updates iterative system state 
estimates using weighted averaging. The optimized K 
matrix for the Kalman filter is designed when solving the 
Algebraic Riccati Equation [3]. 

SIMPLIFIED CIRCUIT MODEL 
A passive pulsed-beam current transformer has a paral-

lel RLC simplified equivalent circuit with a band-pass 
behaviour transfer function [4]. In figure 1 we consider 
some additional details with Csp, Rscp, and Rslp modelling 
the parasitic elements of transformer secondary Inductor 
Ls[5]. The resistor Rt is added across the sensor’s voltage 

 ___________________________________________  
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output leads potentially matching impedance with the 
transmission line path to signal amplification. The beam 
current input is modelled in figure 1 as an AC ideal cur-
rent source. 

 
Figure 1: Simplified Passive Current Transformer 

Modelling this system in SPICE, we can confirm that 
this type of two pole parallel RLC circuit behaves funda-
mentally like a bandpass filter, see figure 2 where the 
solid line is amplitude and the dotted line phase in the 
circuit’s frequency response.  

 
Figure 2: Bandpass Response in SPICE 

Two dynamical states can be identified in this simpli-
fied model; they are the voltage across Csp and the current 
through Ls. Our state-space representation for the current 
transformer sensor system in figure 1 is in equations (8) 
through (16). In these equations ࢖࢙࡯࢜is the voltage across 

Csp referenced to ground, and ࢙ࡸ࢏ is the current flowing 
through ࢙ࡸ towards ground. The circuit input d(t) is the 
current source Ibeam in figure 1, and the output y(t) is 
measured across Rt referenced to ground. 

ሻݐሺݔ ൌ ൤
஼ೞ೛ݒ
݅௅ೞ

൨        (8) 

݀ሺݐሻ ൌ ݅௕௘௔௠        (9) 
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ܤ		    ൌ ቂ0
0
ቃ     (12) 

ܥ	 ൌ ൣܴ௘௙௙ ൫ܴ௘௙௙ െ 1൯ܴ௧൧    (13) 
ܦ						    ൌ ሾ0ሿ     (14) 

ܧ  ൌ ቎
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஼ೞ೛
ோೞ೎೛ோ೐೑೑
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቏     (15) 

௬ܧ	 ൌ ሾሺ1 െ ܴ݂݂݁ሻܴ௧ሿ    (16) 

CHALLENGES 
Initially this type of simple RLC sensor actually ap-

pears to be problematic. Current transformer diagnostics 
systems are challenged by pervasive noise physically co-
resident with the sensor in the typical accelerator 
transport environments [6]. System component value 
identification is also substantially complicated due to the 
sensor’s sensitivity to parasitic elements in the transform-
er’s secondary windings which typically vary over several 
identically procured transformers. A secondary issue is 
that the transformer coupled sensor results in some unde-
sirable droop distortion in response to pulsed input. 

Furthermore, when evaluating options for using a state-
estimator with this type of sensor, we are circumspectly 
aware that this is a system with two internal states, but 
there is only one output port for a state-estimator to utilize 
when observing them. A more substantial concern is that 
in this application the beam-current is the sole driving 
input, but it must be modelled for state-estimation pur-
poses as a disturbance d(t) because it isn’t directly availa-
ble to an auxiliary state-estimator, as is typically required 
for inputs to systems characterized as sufficiently state-
observable.  

KALMAN ESTIMATION APPLICABILITY 
Initially, the Kalman Estimator’s optimal noise reduc-

tion and system component variability error reduction 
appear to be quite promising for addressing at least two of 
the previously identified challenges, associated with cur-
rent transformer sensors. Recall however that, in this 
context, the beam-current is the sole driving input to the 
target system must be modelled as a disturbance d(t), only 
indirectly measurable by an external state-estimator for a 
beam current transformer sensor target system. With con-
ventional Kalman filter design the necessary and suffi-
cient condition for state-observability, calculated in (7), is 
also contingent upon driving d(t) input history being 
known to the state-estimator.  Therefore, application of 
conventional Kalman state-estimation algorithms in cur-
rent monitor sensor systems will not be successful. In-
stead, a specialized state-estimator formulation, the so-
called Unknown Input Observer (UIO) with associated 
theory investigated since the 1970’s [7][8][9][10][11] is 
required. To remain consistent in this paper we will use 
the name unknown input estimator (UIE) for this algo-
rithm. 

SENSOR SYSTEM OBSERVABILITY  
Initially we assume that the external state-estimator 

does have explicit knowledge of all forcing inputs and 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA128

THPHA128
1674

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning



focus instead on the more antecedent issue of obtaining 
observability of all internal states of the target sensor 
system using only its single output port. Recall that we 
must obtain necessary and sufficient state-observability as 
calculated in equation (7). Commonly employed models 
for a non-ideal inductor omits component Rscp possibly 

because it has minimal impact on the inductor’s circuit 
behaviour when operating at lower frequencies. However, 
when attempting to estimate both	࢖࢙࡯࢜and ࢙ࡸ࢏we must 

model also parasitic component Rscp so that ࢖࢙࡯࢜  does not 

become the only internal state variable algorithmically 
linked with the circuit’s output voltage. Furthermore, 
parasitic component Rslp must also be modelled so that ࢙ࡸ࢏ 
does not become the only internal state variable algorith-
mically linked with the circuit’s output voltage y(t), based 
on the first derivative of its current. Finally, we expect 
from a practical perspective that a model-based state 
estimator’s capacity to remove noise from its estimates 
will be enhanced if the two state variables are influenced 
to be mutually out of phase based on parasitic component 
values in our selected current transformer sensor. 

UNKNOWN INPUT ESTIMATOR DESIGN 
To obtain a model of the unknown input system we 

modify state-space equations (1) and (2), eliminating u(t) 
leaving additive disturbance d(t) as the sole system input, 
to obtain equations (17) and (18).  

ሻݐሶሺݔ ൌ ሻݐሺݔܣ ൅  ሻ    (17)ݐሺ݀ܧ
ሻݐሺݕ ൌ ሻݐሺݔܥ ൅  ሻ    (18)ݐ௬݀ሺܧ

The state-space equations for the auxiliary UIE system 
with only disturbance inputs are shown in equations (19) 
and (20). In this estimator z(t) maintains the state estimate 
internally, y(t) is the output from the target system, and 
the ࢞ෝሺ࢚ሻ provides the output estimated variables. The 
time-invariant auxiliary estimator matrices F, K, and H 
need to be designed. 

ሻݐሶሺݖ ൌ ሻݐሺݖܨ ൅  ሻ    (19)ݐሺݕܭ
ሻݐොሺݔ ൌ ሻݐሺݖ ൅  ሻ    (20)ݐሺݕܪ

A fundamental assertion of UIE design is that the error 
e(t) in equation (5) is defined to approach zero asymptoti-
cally independent of the presence of an unknown input 
d(t), and that the estimation process can be decoupled 
from the disturbance. The estimation error can be solved 
for algebraically using (5), (17), (18), (19), and (20). 
Based on the dual conditions that the error approaches 
zero asymptotically, and the estimator structure requires 
ሶ݁ ሺݐሻ ൌ -ሻ, then a solution can be derived for an estiݐሺ݁ܨ

mator. This class of estimator is described theoretically in 
the literature [7][8][9][10][11], in a textbook chapter [12], 
and as stepwise design in [13]. The tuple 〈ܥ,  ଵ〉 must beܣ
observable in equation (7) as a necessary condition for 
UIE existence. In the beam current transformer context 
this observability criteria was satisfied without additional 
effort, but there are additional options decomposing the 
tuple 〈ܥ, -ଵ〉 into observer canonical form obtaining obܣ
servability whenever a stable UIE exists. Next some of 
the UIE time-invariant matrices can be calculated in equa-
tions (21) and (22). 

ܪ ൌ  ሿିଵ     (21)ܧܥሾܧ
ଵܣ  ൌ ሺܫ െ  (22)      ܣሻܥܪ

Feedback stability of the UIE requires stable eigenval-
ues of F in equation (23). This is easily accomplished 
using an Octave control system package library functions 
such as place or lqr to calculate feedback gain K1 pass-
ing ࡭૚

-for the function’s A and B matrix parame ࢀ࡯ andࢀ
ters. Both methods were tried with the lqr based pole 
placement appearing to be more efficient for arriving at 
an estimator with good performance removing noise 
while also faithfully tracking the sensor voltage out, but 
this of course will be highly dependent on the skills of the 
system designer. With either approach we can adjust the 
estimator performance for various metrics, but in contrast 
to the famous Kalman algorithm, we expect that mathe-
matical optimal error reduction for noise and or system 
errors with known Guassian statistics is no-longer guaran-
teed. 

Finally, we can finish the UIE design calculating matrix 
K in equation (24). 

ܨ ൌ  (23)     ܥଵܭଵെܣ
ܭ ൌ 1ܭ ൅ 2ܭ ൌ 1ܭ ൅  (24)   ܪܨ

Once we have created a stable feedback UIE then it is 
useful also to calculate the disturbance value, in this situa-
tion the beam-current, given the UIE’s estimate of the 
sensor’s internal states. This must be approached careful-
ly so that we obtain a meaningful and accurate result. The 

proper approach can be derived by taking 
ௗ

ௗ௧
 of the output 

in equation (18), and next substituting (17) to obtain 
equation (25) [10]. 

ሶݕ ൌ ሻݐሺݔܣܥ ൅ ሻݐሺ݀ܧܥ ൅ ௬ܧ ሶ݀ሺ(25)      (ݐ 
From (25) an estimate for d(t) can then be obtained alge-
braically in (26). Initially there are concerns about in-
creased noise coupling due to summation with ࢟ෝሶ  a deri-
vate term. However in practice positive results are ob-
tained, perhaps because the derivative of the state esti-
mate ࢟ෝ and not the derivative of the sensor output voltage 
y is the basis for our result. 

መ݀ሺݐሻ ൌ ሾܧܥሿିଵൣݕොሶ െ  ሻ൧   (26)ݐොሺݔܣܥ
To obtain simulated estimates for ࢟ෝ	and ࢟ෝሶ  it is neces-

sary to add some additional estimator states to the UIO in 
Octave.  

SIMULATION RESULTS 
In figure 3 results from simulating the target beam cur-

rent transformer sensor system along with the auxiliary 
unknown input estimator can be seen. First, a simulated 
beam current source was created by removing the nega-
tive excursions of a sine function, next imposing a 
LANSCE mini-pulse time structure, and finally adding 
Gaussian distribution noise. Second, the target beam cur-
rent transformer sensor system was simulated, using the 
simulated beam current source as its input, and capturing 
its output. Third, Gaussian distribution noise was added 
also to the target beam current transformer sensor system 
simulated output. Fourth, the UIE system was simulated, 
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using the simulated sensor system output plus added noise 
as its input, and capturing its output.  

Initial simulation results are positive with the estimator 
appearing to exhibit good performance removing sensor 
and process noise as anticipated. When running the simu-
lation it is observed that the UIE performance is sensitive 
to the RLC bandpass high frequency cut-off of the sensor. 
If we open up the high frequency bandwidth of the sensor 
sufficiently so that the LANSCE RF micro pulses pass 
through the sensor then the UIE does not perform as well 
removing noise. Otherwise, the UIE appears to perform 
well for a range of different sensor component value se-
lections that were tried.  

FUTURE WORK 
At this time, mismatching the UIE’s knowledge of the 

target sensor components and the target sensor simula-

tion’s knowledge of sensor components has not been 
tried. This would require some substantial modifications 
to the simulation script. 

Modern tools exist for converting Octave (MATLAB) 
models into a physical FPGA-based signal processing 
system, and the next step would be to test the algorithm 
on a physical system. 

For steady-state beam droop distortion perhaps isn’t no-
ticed because the sensor’s transformer coupled output and 
the UIE’s estimate of it will settle to a quiescent offset. In 
contrast, for pulsed beam structure droop distortion might 
become problematic depending on sensor component 
values. However, it is expected that, with an FPGA im-
plementation, additional logic could be added resetting 
UIE initial conditions whenever measured beam current 
drops below a certain threshold, and consequently droop 
distortion might be significantly reduced, at least for 

Figure 3: Octave Simulation Results 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA128

THPHA128
1676

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning



some modes of beam pulse time structure at LANSCE. 
Also, potential for eliminating this type of distortion with 
enhanced estimations of d(t) needs further investigation. 

CONCLUSION 
The current transformer sensor was characterized in 

SPICE considering additional parasitic component values. 
A novel approach for beam current transformer data ac-
quisition was designed and simulated. The specific Kal-
man algorithm was found to be incompatible with this 
context and instead a related estimator algorithm, the so-
called the Unknown Input Estimator, was evaluated, for 
beam current transformer sensor systems. Initial Octave 
simulation results are positive with this estimator appear-
ing to exhibit good performance reducing sensor and 
process noise. We hope to test the UIE based data acquisi-
tion on a physical system in the near future. The UIE 
implementation also appears to have potential for reduc-
ing droop distortion. 
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