
BUILDING CONTROLS APPLICATIONS USING HTTP SERVICES*

T. D’Ottavio
†
, K. Brown, A. Fernando, S. Nemesure

Brookhaven National Laboratory, Upton, NY, USA

Abstract
This paper describes the development and use of an

HTTP services architecture for building controls applica-

tions within the BNL Collider-Accelerator depart-

ment. Instead of binding application services (access to

live, database, and archived data, etc) into monolithic

applications using libraries written in C++ or Java, this

new method moves those services onto networked pro-

cesses that communicate with the core applications using

the HTTP protocol and a RESTful interface. This allows

applications to be built for a variety of different environ-

ments, including web browsers and mobile devices, with-

out the need to rewrite existing library code that has been

built and tested over many years. Making these HTTP

services available via a reverse proxy server (NGINX)

adds additional flexibility and security. This paper pre-

sents implementation details, pros and cons to this ap-

proach, and expected future directions.

INTRODUCTION

Application development has changed dramatically

over the last 20 years. These changes encompass the

computer languages that we use, the infrastructure that

binds software modules together, and the development

tools used to build the software. This paper focuses pri-

marily on changes to the software infrastructure.

Figure 1: Traditional Monolithic Application.

Twenty years ago, most applications were built using a

single computer language, with software tools bound into

the application running as a single executable program.

This is known as a monolithic application [1]. As seen in

Fig. 1 above, a monolithic Controls application might be

written in C++ or Java and consist of a custom user inter-

face utilizing standard toolkits to access control system

devices, interact with database systems, and/or extract

data stored by archiving or logging systems.

Of course, this is still a viable way to put applications

together and will remain so for many years to come. The

process is well established and highly optimized. And the

applications produced have very good performance and

are relatively straightforward to test and troubleshoot.

However, this type of application development does have

some limitations. The next section describes the issues

that drove our group to look for an alternative.

Limitations of Monolithic Applications

Language and Code Reuse Twenty years ago, all of

our applications were built as monolithic applications

using C and C++. A few years later, we started investi-

gating what it would take to use Java for application de-

velopment. Java had in many ways surpassed C++ in

terms of its basic tools and development environment and

had become the language of choice for many software

developers.

The problem was that we had invested many years of

effort into building a set of modular C++ tools for stream-

lining application development. And we wanted to reuse

these tools if possible. We explored, and then rejected as

too complicated, the use of Java Native Interface (JNI)

[2], which allows Java programs to call C/C++ code. We

followed a similar path when exploring the Common

Object Request Broker Architecture (CORBA) model [3].

Instead, we invested our time into rewriting many of our

C++ tools in Java.

However, it was clear, even before we were finished

with that effort, that supporting other types of applica-

tions (LabView, MatLab, python, web browser, synoptic

displays) would be necessary as well. We needed a more

flexible way to reuse the software tools that we had built

using C++ and Java.

Remote and Mobile Clients A second arc in our ap-

plication development needs revolved around using our

applications outside of the BNL campus, especially from

employee homes. This was driven mostly by the expan-

sion of broadband to homes and the associated increases

in broadband speeds.

Our first solution to this problem was to have users log-

in and run applications on BNL computers, but display

them on their local home computers. This is possible

because most of our applications are written for a

Linux/X Windows environment, which has remote dis-

play built into the X Windows protocol [4]. This solution

works, but requires users to install special software on

their home computers. In addition, remote displays can

be slow, even with relatively fast home connections.

Recently, we’ve improved display performance by using

a commercial product specifically designed to speed up X

Windows network communication [5].

Though the above solution works, and is still in use to-

day, it ultimately limits users to running Linux/X Win-

dows applications on remote computers that are specially

configured for that purpose. It would be preferable if the

computer could run applications in its native environ-

ment. This would allow a user to run an application from

a computer not specially configured (for example, in a

hotel) or run an application from a universally available

environment like a web browser.

Stored Data
Tools

Live Device
Tools

Database
Tools

User Interface

 __

* Work supported by Brookhaven Science Associates, LLC under Con-

tract No. DE-SC0012704 with the U.S. Department of Energy.

† Email address dottavio@bnl.gov

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPA06

THMPA06
1320

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

A final push came from the popularity of mobile devic-

es like smart phones and tablets. How could our Controls

applications be run on these devices? Certainly a mouse-

driven, remote X Windows client solution wouldn’t work

for these touch-based devices.

USING HTTP SERVICES

Based on the above history, we began to explore the

idea of making some of our core Controls system tools

available as networked services. This involved wrapping

existing toolkits with a network communication layer and

a network API as shown below in Fig. 2.

Figure 2: Application Using HTTP Services.

Using HTTP as the network protocol was an easy

choice. There are many good HTTP development tools

available for virtually all languages and operating systems

and most of them are free. HTTP is the native protocol

used by web browsers, which makes building web appli-

cations easier and allows the browser to be used as a

testing tool. In addition, the basic verbs used by the

HTTP protocol (GET, SET, POST, DELETE) easily map

onto the operations needed by most Controls applications

[6]. So creating an HTTP network API for a Controls

toolkit is not difficult. And there are many good tools

available for encoding and decoding data into JSON [7]

and XML [8], which have become the standard ways to

package data moving into and out of HTTP services.

There are many good choices for wrapping a toolkit in

an HTTP shell. Typically, you would choose one written

in the same language as the tools that you want to wrap.

We chose a Java wrapper in most cases, both to match

existing toolkits and to match our developer preferences.

In particular, we expose many of our services using a

Java Enterprise Edition (Java EE) server [9]. We started

with one called GlassFish [10], but have recently moved

these services to Payara [11]. Both are free. We have

also used an HTTP wrapper for our C++ tools [12].

By moving services onto the network and exposing

them with an HTTP interface, we open up applications to

services that may have been previously unavailable. For

example, a C++ application can now take advantage of

code written in Java, and a Python script can now access

tools written in C++. This solved some problems, but not

all that was needed.

SHARING HTTP SERVICES

With a monolithic application, all “services” are built

into the application and are available only to that applica-

tion. In theory, the same could be done with HTTP ser-

vices. An application, when it starts, could also start the

HTTP services that it needs, use them while running, then

stop those services when it quits.

In practice, though, the services model is much more

powerful when the services are always available and can

service multiple applications at the same time. In this

case, you start to think of services as part of the infra-

structure available to all applications, like the networked

file system. Applications become “thin” – that is, they

consist of nothing but native user interface code and calls

to HTTP services. This makes constructing applications

simpler and developers more productive. An always-on

service infrastructure makes it possible to construct more

types of clients (web, remote, mobile), as long as the

clients can figure out how to talk to the needed services.

So how do clients know where services are located and

how to communicate with them? For HTTP communica-

tion, this involves the client knowing the hostname (or IP

address) and port number for each of the services that the

client will be using. Initially, these can be hardcoded or

located in a file or database. But, ultimately, you’ll want

a more flexible arrangement. The solution that we use

involves running a Reverse Proxy Server as shown in Fig.

3 below.

Figure 3: Applications Sharing HTTP Services.

A reverse proxy [13] retrieves resources on behalf of a

client from one or more services. It then returns those

resources to the client as if they originated directly from

the services. All clients deal only with the reverse proxy

and know nothing about the location of the services. The

reverse proxy maintains an internal mapping of request

type and service location that allows it to reroute requests

to the right service. If the service location moves, only

the reverse proxy needs to be informed. We are currently

using reverse proxy software made by NGINX [14].

DISCUSSION

Other Advantages of Reverse Proxys

As noted above, a reverse proxy is primarily intended

to assist in routing HTTP messages from clients to ser-

vices. But it can be used for additional purposes:

• Load Balancing – At some point, resources may get

stretched at one or more of the HTTP services. In

this case, you can run more than one service of a

given type and set up the reverse proxy to take care

of how clients are routed to services.

• Connection Limiting – The reverse proxy can be

used to limit both the number of connections and the

Stored Data
Service

Live Device
Service

Database
Service

User Interface (Native)

HTTP

Reverse Proxy Server

iOS Java Python Browser

Stored Data
Service

Live Device
Service

Database
Service

HTTP

HTTP

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPA06

Software Technology Evolution
THMPA06

1321

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

frequency with which any one client can connect.

This helps to prevent overloaded services and inhibit

Denial of Service (DOS) attacks [15].

• Other – A reverse proxy can also be a focal point for

additional security measures, data compression, and

SSL management.

More on Moving to HTTP Services

After reading this paper, you may be thinking that tran-

sitioning to HTTP services is a big job. However, virtual-

ly all of the work can be done incrementally. We started

with one set of tools (Stored Data) that we use to access

data from our logging system, wrapping these Java tools

inside a GlassFish server. Then we modified one C++

data viewing application to read data from that server.

The success of this initial work convinced us to keep

going down this path, wrapping more toolkits as HTTP

services, and modifying more applications to use them.

Use of the Reverse Proxy Server became essential only

when we started running remote applications, though we

would recommend using one even for internal use.

Developing HTTP Applications

There are many good and free HTTP development

tools. We, in no way, did an exhaustive search of the best

possible tools. But for those that might be interested, here

is a list of the tools that we have found useful.

The Integrated Development Environment (IDE) that

most developers are using is Eclipse [16]. It provides

good integration with the Java EE servers that we typical-

ly use to run HTTP services, has good facilities for edit-

ing and debugging, and can be extended with a number of

useful plugins.

We have found it useful to have tools that can make

HTTP requests and see their response. For HTTP GET

requests, a standard web browser is often useful, properly

formatting XML or JSON responses. Some browsers

have plugins (eg. RESTClient for Firefox) that permit the

testing of all HTTP requests. Other tools of this type we

have found useful are the Curl command-line tool [17] as

well as other standalone HTTP/REST clients that have

user interfaces such as WizTools/RESTClient [18].

Additional Pros and Cons

We have a small group of programmers that is primari-

ly responsible for building and maintaining most of the

applications used by members of our Collider-Accelerator

facility. Over time, individual programmers become

expert in particular areas of the control system. Moving

software tools to HTTP services has allowed those ex-

perts to more easily take responsibility for those software

tools with which they feel most comfortable and have the

most expertise. And it allows those experts more freedom

to package, test, and release changes as needed.

We have noticed a couple of disadvantages when com-

paring the process of building and supporting monolithic

applications vs. HTTP service applications. First, the

extra network hop required to make remote procedure

calls using HTTP can have an effect on performance. A

minimum round-trip time for accessing an HTTP service

is about a millisecond. Depending on the tool and the

application, this time may or may not be significant. A

second disadvantage is that it is sometimes more compli-

cated to diagnose and debug software issues. With a

monolithic application, one can easily attach a debugger

to diagnose a problem. But an application built with

HTTP services is split across many processes. Even if

you can isolate the problem to one of the HTTP services,

you will usually need to set up a private test environment

to debug the problem. Neither of these problems is se-

vere for most applications, but it is wise to keep them in

mind.

Future Directions

Containers [19] allow for the packaging of HTTP ser-

vices that contain code, configuration, and dependencies

in a module that can run in virtually any operating system

environment. This would help to reduce the time that is

currently necessary setting up the HTTP service environ-

ment.

REFERENCES

[1] Wikipedia, Monolithic application,
https://en.wikipedia.org/wiki/Monolithic_application

[2] acmqueue, The Rise and Fall of CORBA,
http://queue.acm.org/detail.cfm?id=1142044

[3] Wikipedia, Java Native Interface,
https://en.wikipedia.org/wiki/Java_Native_Interface

[4] Wikipedia, Network transparency,
https://en.wikipedia.org/wiki/Network_transparency

[5] NoMachine, https://www.nomachine.com

[6] Wikipedia, Hypertext Transfer Protocol,
https://en.wikipedia.org/wiki/Hypertext_Transfer_Proto
col

[7] Wikipedia, JSON https://en.wikipedia.org/wiki/JSON

[8] Wikipedia, XML https://en.wikipedia.org/wiki/XML

[9] Wikipedia, Java Platform, Enterprise Edition,
https://en.wikipedia.org/wiki/Java_Platform,_Enterprise
_Edition

[10] Wikipedia, GlassFish,
https://en.wikipedia.org/wiki/GlassFish

[11] Payara, https://www.payara.fish

[12] CPP-NETLIB, http://cpp-netlib.org

[13] Wikipedia, Reverse proxy,
https://en.wikipedia.org/wiki/Reverse_proxy

[14] NGINX, https://www.nginx.com

[15] Wikipedia, Denial-of-service,
https://en.wikipedia.org/wiki/Denial-of-service_attack

[16] Eclipse, http://www.eclipse.org

[17] Curl, https://curl.haxx.se

[18] RESTClient, https://www.wiztools.org

[19] Containers, https://aws.amazon.com/containers/

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THMPA06

THMPA06
1322

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

