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Abstract

A high intensity neutrino beam produced at J-PARC is

utilized by a long-baseline neutrino oscillation experiment.

To generate a high intensity neutrino beam, a high inten-

sity proton beam is extracted from the 30 GeV Main Ring

synchrotron to the neutrino primary beamline. In the beam-

line, one mistaken shot can potentially do serious damage to

beamline equipment. To avoid such a consequence, many

beamline equipment interlocks to stop the beam operation

are implemented. Once an interlock is activated, prompt

and proper error handling is necessary. We are developing

an expert system for prompt and efficient understanding of

the status to quickly resume the beam operation. An in-

ference engine is one key component in the expert system.

Although a typical inference engine of the expert system is

rule-based, we adapt a Machine-Learning (ML) based infer-

ence engine in our expert system. We will report the initial

evaluation of our ML-based inference engine.

INTRODUCTION

The T2K (Tokai-to-Kamioka) experiment [1] is a long-

baseline neutrino oscillation experiment at J-PARC (Japan

Proton Accelerator Research Complex). Figure 1 shows

the overview of the T2K experiment. A high intensity

neutrino/anti-neutrino beam is produced and propagates

295 km from J-PARC to Super-Kamiokande (SK). In July

2013, muon neutrino to electron neutrino transformation

was firmly established [2]. In August 2017, T2K excluded

CP-conservation at 95% confidence level using the latest

data. In order to keep generating interesting physics, steady

operation of the facility is very important.

Super‐KaŵiokaŶde J‐PARCNear DeteĐtors

NeutriŶo Beaŵ

Ϯ9ϱ kŵ

Mt. NoguĐhi‐Goro
Ϯ,9Ϯϰ ŵ

Mt. IkeŶo‐Yaŵa
ϭ,ϯϲϬ ŵ

ϭ,ϳϬϬ ŵ ďeloǁ sea leǀel

Figure 1: Overview of the T2K experiment.

Figure 2 shows a layout of the neutrino experimental fa-

cility (neutrino facility) at J-PARC. The neutrino facility is

composed of two beamlines and a near detector (ND280).

The beamline consists of the primary and secondary beam-

lines. In the primary beamline, the high intensity proton

beam is extracted from the Main Ring synchrotron (MR)

and guided through super and normal conducting magnets
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to the target station. In the secondary beamline, the proton

beam hits a graphite target and produces pions. These pions

decay into muons and muon neutrinos in a decay volume.

The high intensity proton beam reached 470 kW in 2017

and ready to the design power of 750kW with a few years.
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Figure 2: Layout of the T2K experimental facility.

MOTIVATION

We handle a high intensity proton beam at the J-PARC

neutrino facility. If an interlock is activated, prompt and

proper error handling is necessary. However it is not easy

because of the following reasons:

• There are many interlock sources (∼800)

• Multiple sources of interlock can happen at the same

time

It is difficult for the beamline operators to understand the

beamline status and recovery procedure and resume beam

operation correctly and rapidly. To improve this situation,

we plan to introduce a beamline expert system.

MPS IN THE NEUTRINO FACILITY

MPS, Machine Protection System, is an interlock de-

signed to protect beamline equipment from the high inten-

sity beam. If an MPS occurs, the beam in the MR is aborted

and next beam spill is inhibited. The MPS is critical in

a high intensity proton beam facility because one off-orbit

beam spill potentially can do serious damage to the beam-

line equipment.

The number of MPS source channels at the neutrino fa-

cility is approximately 800. These contain interlock signals

from each beam loss monitor (BLM), as well as the magnet

power supplies, etc.
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Some Actual Examples of MPS Events

Here we introduce some actual examples of MPS events.

Figure 3 shows the primary beamline of the neutrino facility

and the fast extraction magnets of the MR. A failure of the

fast extraction magnets, such as the septum magnets (FX

septum) and/or kicker magnets (FX kicker), causes simul-

taneous BLM MPS events at the primary beamline (shaded

region).

Fast	Extraction	Magnets

BLM01

BLM50・
・
・

Figure 3: The primary beamline and fast extraction mag-

nets.

Figure 4 shows the BLM MPS events caused by the FX

septum or kicker for February 2016 to March 2017. Each

row shows the BLM number, BLM#1 to #50. The or-

ange cells represent the activation of each BLM MPS. The

columns show each MPS event. There are 10 events. It is

difficult to quickly understand the source of the MPS just

looking at these BLM MPS patterns.

2016/2/11 2016/2/17 2016/2/23 2016/2/25 2016/5/15 2016/11/14 2016/12/11 2016/12/25 2017/2/27 2017/3/20

SEPTUM SEPTUM SEPTUM SEPTUM FXKM FXKM FXKM FXKM FXKM FXKM

BLMP01 1 1 1 1 1 0 1 1 1 1

BLMP02 1 1 1 1 1 0 1 1 1 1

BLMP03 1 1 1 1 1 0 1 1 1 1

BLMP04 1 1 1 1 1 0 1 1 1 1

BLMP05 1 1 1 1 1 1 1 1 1 1

BLMP06 1 1 1 1 1 1 1 1 1 1

BLMP07 1 1 1 1 1 1 1 1 1 1

BLMP08 1 1 1 1 1 1 1 1 1 1

BLMP09 1 1 1 1 1 1 1 1 1 1

BLMP10 1 1 1 1 1 1 1 1 1 1

BLMP11 1 1 1 1 1 1 1 1 1 1

BLMP12 1 1 1 1 1 1 1 1 1 1

BLMP13 1 1 1 1 1 1 1 1 1 1

BLMP14 1 1 1 1 1 1 1 1 1 1

BLMP15 1 1 1 1 1 1 1 1 1 1

BLMP16 1 1 1 0 0 1 0 1 0 1

BLMP17 1 1 1 1 1 1 1 1 1 1

BLMP18 1 1 1 1 1 1 1 1 1 1

BLMP19 1 1 1 1 0 1 0 1 0 1

BLMP20 1 1 1 1 1 1 1 1 1 1

BLMP21 1 1 1 1 1 1 1 1 1 1

BLMP22 1 1 1 1 1 1 1 1 1 1

BLMP23 1 1 1 1 1 1 1 1 1 1

BLMP24 1 1 1 1 1 1 1 1 1 1

BLMP25 1 1 1 1 1 1 1 1 1 1

BLMP26 1 1 1 1 1 1 1 1 1 1

BLMP27 1 1 1 1 1 1 1 1 1 1

BLMP28 1 1 1 1 0 1 0 1 0 1

BLMP29 1 1 1 1 0 1 0 1 0 1

BLMP30 0 1 1 1 0 1 0 1 0 1

BLMP31 1 1 1 1 0 1 0 1 0 1

BLMP32 1 1 0 0 0 1 0 1 0 1

BLMP33 1 1 1 0 0 1 0 0 0 0

BLMP34 0 0 0 0 0 1 0 1 0 1

BLMP35 0 0 0 0 0 0 0 0 0 1

BLMP36 0 0 0 0 0 1 0 1 0 1

BLMP37 0 0 0 0 0 1 0 0 0 0

BLMP38 0 0 0 0 0 1 0 1 0 1

BLMP39 0 0 0 0 0 1 0 0 0 1

BLMP40 0 0 0 0 0 1 0 1 0 1

BLMP41 0 0 0 0 0 0 0 0 0 0

BLMP42 0 0 0 0 0 0 0 0 0 0

BLMP43 0 0 0 0 0 0 0 0 0 0

BLMP44 0 0 0 0 0 0 0 0 0 0

BLMP45 0 0 0 0 0 1 0 0 0 0

BLMP46 0 0 0 0 0 1 0 0 0 0

BLMP47 0 0 0 0 0 0 0 0 0 0

BLMP48 0 0 0 0 0 1 0 0 0 1

BLMP49 0 0 0 0 0 1 0 1 0 1

BLMP50 0 0 0 0 0 1 0 1 0 1

Figure 4: BLM MPS patterns caused by FX septum or

kicker.

BEAMLINE EXPERT SYSTEM

Overview of Beamline Expert System

Figure 5 shows a schematic diagram of the beamline ex-

pert system. The beamline expert system continuously col-

lects the MPS status. If MPS is activated at the neutrino

facility, expert system infers the MPS reason and presents a

recovery procedure.

Reason	of	

MPS,

Recovery	

procedure
Input Output

Inference	engine

MPS	status,

Interlock	Info.

Figure 5: Schematic diagram of the beam line expert sys-

tem.

New Idea of Inference Engine Based on Machine

Learning

The“ inference engine”is a key component of the ex-

pert system. It infers the cause of MPS. Although a typical

expert system inference engine is rule-based [3], we adapt a

machine-learning(ML) based inference engine in our expert

system.

ML is a method of optimization for the model constructed

by a neural network. We evaluated the following procedure:

1. We defined a model using TensorFlow™ [4], which

is a famous open-source library for machine learning

developed by Google.

2. Training was performed using training data generated

by bit-manipulation of the real MPS events. The model

parameters were optimized by supervised training.

3. Finally we used the trained model as an expert system

inference engine, as well as to evaluate it using a test

dataset.

We will discuss the initial evaluation of the ML-based in-

ference engine in the following section.

Index of Learning Degree

There are two indexes of the progress degree of training.

One is "cross-entropy" and the other is "accuracy". Cross-

entropy function (E) is defined as in equation (1).

E(t, y) = −

M∑

i

N∑

j

ti, j log yi, j (1)

where ti, j is the true label distribution by one-hot encoding,

which is a group of bits and contains a single one and all

the others zero, yi, j is a prediction from the model. M is

the number of the training datasets, and N is the number

of the labels. As in the equation, cross-entropy is positive
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and it tends toward zero as the model gets better at training.

Accuracy (Acc) is the correct answer rate of prediction from

the model and it is defined the equation (2).

Acc =
Number of correct predictions

Number of input data
(2)

If the results of the prediction are correct, the model can

classify perfectly, and in this case the accuracy is 1.

INITIAL EVALUATION OF MACHINE

LEARNING BASED INFERENCE ENGINE

Testbed

We used the following hardware and software for the

evaluation.

• MacBook Pro (2.7 GHz Intel Core i5)

• Tensorflow™1.2.0 with Python 2.7.12

Method of the Initial Evaluation

We carried out the initial evaluation of the ML-based in-

ference engine considering the following cases:

• A case where interlock signals from many BLMs

placed along the primary beamline fire simultane-

ously: This is caused by either a failure of the FX sep-

tum or kicker magnets.

• A case where there is an MPS from a source other than

a BLM, such as the normal-conducting magnets, etc.

Our initial evaluation is to classify the MPS events into three

labels, which are (1) FX septum, (2) FX kicker or (3) others,

using the ML-based inference engine.

A Model for the Initial Evaluation

We used a 2-layer neural network model for the evalu-

ation. Figure 6 shows a schematic diagram of the 2-layer

model. The MPS bit stream is put into the input layer in our

case. The output layer is 3 nodes and it is taken to represent

the classification of FX septum, kicker or others.

・
・
・

・
・
・

Input	Layer

784	node

Output	Layer

3 node

Hidden	Layer

500	node
SEPTUM SEPTUM SEPTUM SEPTUM FXKM FXKM FXKM FXKM FXKM FXKM

P01 1 1 1 1 1 0 1 1 1 1

P02 1 1 1 1 1 0 1 1 1 1

P03 1 1 1 1 1 0 1 1 1 1

P04 1 1 1 1 1 0 1 1 1 1

P05 1 1 1 1 1 1 1 1 1 1

P06 1 1 1 1 1 1 1 1 1 1

P07 1 1 1 1 1 1 1 1 1 1

P08 1 1 1 1 1 1 1 1 1 1

P09 1 1 1 1 1 1 1 1 1 1

P10 1 1 1 1 1 1 1 1 1 1

P11 1 1 1 1 1 1 1 1 1 1

P12 1 1 1 1 1 1 1 1 1 1

P13 1 1 1 1 1 1 1 1 1 1

P14 1 1 1 1 1 1 1 1 1 1

P15 1 1 1 1 1 1 1 1 1 1

P16 1 1 1 0 0 1 0 1 0 1

P17 1 1 1 1 1 1 1 1 1 1

P18 1 1 1 1 1 1 1 1 1 1

P19 1 1 1 1 0 1 0 1 0 1

P20 1 1 1 1 1 1 1 1 1 1

P21 1 1 1 1 1 1 1 1 1 1

P22 1 1 1 1 1 1 1 1 1 1

P23 1 1 1 1 1 1 1 1 1 1

P24 1 1 1 1 1 1 1 1 1 1

P25 1 1 1 1 1 1 1 1 1 1

P26 1 1 1 1 1 1 1 1 1 1

P27 1 1 1 1 1 1 1 1 1 1

P28 1 1 1 1 0 1 0 1 0 1

P29 1 1 1 1 0 1 0 1 0 1

P30 0 1 1 1 0 1 0 1 0 1

P31 1 1 1 1 0 1 0 1 0 1

P32 1 1 0 0 0 1 0 1 0 1

P33 1 1 1 0 0 1 0 0 0 0

P34 0 0 0 0 0 1 0 1 0 1

P35 0 0 0 0 0 0 0 0 0 1

P36 0 0 0 0 0 1 0 1 0 1

P37 0 0 0 0 0 1 0 0 0 0

P38 0 0 0 0 0 1 0 1 0 1

P39 0 0 0 0 0 1 0 0 0 1

P40 0 0 0 0 0 1 0 1 0 1

P41 0 0 0 0 0 0 0 0 0 0

P42 0 0 0 0 0 0 0 0 0 0

P43 0 0 0 0 0 0 0 0 0 0

P44 0 0 0 0 0 0 0 0 0 0

P45 0 0 0 0 0 1 0 0 0 0

P46 0 0 0 0 0 1 0 0 0 0

P47 0 0 0 0 0 0 0 0 0 0

P48 0 0 0 0 0 1 0 0 0 1

P49 0 0 0 0 0 1 0 1 0 1

P50 0 0 0 0 0 1 0 1 0 1

BLM	50	ch

+

Other	734	ch

Figure 6: 2-layer neural network model.

We performed a supervised training of the model. Figure

7 shows the schematic diagram of the supervised training.

First we prepared training data which consists of input data

with its correct label and 30000 training datasets (10000 of

each label as shown in table 1) generated based on the actual

past MPS events. Then we performed training to optimize

the model to get the correct label.

Model
Supervised

Learning

Iteration

Training

Dataset

Figure 7: Supervised training.

Table 1: Training Dataset

MPS source Label Number of data

FX septum 0 10000

FX kicker 1 10000

Other 2 10000

Results of Initial Evaluation

Figure 8 shows the cross-entropy as a function of the

number of training. The vertical axis shows cross-entropy

and the horizontal axis shows the number of training. The

cross-entoropy is reduced rapidly and became flat. Figure

9 shows a graph of the accuracy of training. The accuracy

improved rapidly and became 1 at about twenty training.

After the training, we also evaluated the model using a set

of data which is independent of the training data, and the re-

sult of accuracy was 1. It means the model can classify the

MPS into the three classes, FX septum, kicker and others,

perfectly.

Number	of	training

C
ro
ss
-e
n
tr
o
p
y

Figure 8: Cross-entropy of the 2-layer model in the training.

We also performed a study with an other model case,

CNN (Convolution Neural Network), which is particularly

Supervised Training of the Model 
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Number	of	training

A
cc
u
ra
cy

Figure 9: Accuracy of the 2-layer model in the training.

well-adapted to classify images. Figure 10 shows the cross-

entropy of the 2-layer model, as shown in Figure 8 but with a

reduced vertical axis. Figure 11 shows the cross-entropy of

the CNN model. From this initial study, it is found that the

CNN model also shows 100% accuracy, while the learning

speed seems faster than the 2-layer model.
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n
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o
p
y

Number	of	trainig

Figure 10: Cross-entropy of the 2-layer model in the train-

ing. The graph is as same as Fig 8 and verical axis is up to

100 instead of 500.
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Figure 11: Cross-entropy of the CNN model in the training.

SUMMARY AND FUTURE PROSPECT

We are developing a ML-based beamline expert system

for the J-PARC neutrino facility. We performed initial eval-

uation and the results indicate that a ML-based inference

engine is promising. We also evaluated other model scheme

(e.g. Convolution Neural Network) . We plan to study fur-

ther details of the ML-based inference engine and evaluate

the expert system with future actual interlock events during

the next beam operation (from mid-October 2017). As a

next step of our development, to detect a sign of beamline

equipment abnormality using the ML-based expert system,

we plan to use various monitor data of the beamline equip-

ment in addition to MPS data.
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