Author: Olsen, R.H.
Paper Title Page
THMPL03 A New Simulation Architecture for Improving Software Reliability in Collider-Accelerator Control Systems 1261
 
  • Y. Gao, T.G. Robertazzi
    Stony Brook University, Stony Brook, New York, USA
  • K.A. Brown, J. Morris, R.H. Olsen
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Relativistic Heavy Ion Collider (RHIC) complex of accelerators at Brookhaven National Laboratory (BNL) operates using a large distributed controls system, consisting of approximately 1.5 million control points, over 430 VME based control modules, and thousands of server processes. We have developed a new testing platform that can be used to improve code reliability and help streamline the code development process by adding more automated testing. The testing platform simulates the control system using the actual controls system code base but by redirecting the I/O to simulated interfaces. In this report, we will describe the design of the system and the current status of its development.
 
slides icon Slides THMPL03 [0.666 MB]  
poster icon Poster THMPL03 [0.674 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THMPL03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)