Author: Cirami, R.
Paper Title Page
TUPHA050 The SKA Dish Local Monitoring and Control System 508
 
  • S. Riggi, U. Becciani, A. Costa, A. Ingallinera, F. Schillirò, C. Trigilio
    INAF-OACT, Catania, Italy
  • S. Buttaccio, G. Nicotra
    INAF IRA, Bologna, Italy
  • R. Cirami, A. Marassi
    INAF-OAT, Trieste, Italy
 
  The Square Kilometre Array (SKA) will be the world's largest and most sensitive radio observatory ever built. SKA is currently completing the pre-construction phase before initiating mass construction phase 1, in which two arrays of radio antennas - SKA1-Mid and SKA1-Low - will be installed in the South Africa's Karoo region and Western Australia's Murchinson Shire, each covering a different range of radio frequencies. The SKA1-Mid array comprises 130 15-m diameter dish antennas observing in the 350 MHz-14 GHz range and will be remotely orchestrated by the SKA Telescope Manager (TM) system. To enable onsite and remote operations each dish will be equipped with a Local Monitoring and Control (LMC) system responsible to directly manage and coordinate antenna instrumentation and subsystems, providing a rolled-up monitoring view and high-level control to TM. This paper gives a status update of the antenna instrumentation and control software design and provides details on the LMC software prototype being developed.  
poster icon Poster TUPHA050 [3.507 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA195 ESPRESSO Instrument Control Electronics and Software: Final Phases Before the Installation in Chile 891
 
  • V. Baldini, G. Calderone, R. Cirami, I. Coretti, S. Cristiani, P. Di Marcantonio
    INAF-OAT, Trieste, Italy
  • D. Mégevand
    Université de Genève, Observatoire Astronomique, Versoix, Switzerland
  • M. Riva
    INAF-Osservatorio Astronomico di Brera, Merate, Italy
 
  ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations, is undergoing the final testing phases before being shipped to Chile and installed in the Combined Coudé Laboratory (CCL) at the ESO Very Large Telescope site. The integration of the instrument takes place at the Astronomical Observatory of Geneva. It includes the full tests of the Instrument Control Electronics (ICE) and Instrument Control Software (ICS), designed and developed at the INAF-Astronomical Observatory of Trieste. ESPRESSO is the first ESO-VLT permanent instrument which electronics is based on Beckhoff PLCs. Two PLC CPUs shares all the workload of the ESPRESSO functions and through the OPC-UA protocol the PLC communicates with the instrument control software based on VLT control software package. In this phase all the devices and subsystems of ESPRESSO are installed, connected together and verified, mimicking the final working conditions in Chile. This paper will summarize the features of the ESPRESSO control system, the tests performed during the integration in Europe and the main performance obtained before the integration of the whole instrument "on sky" in South America.  
poster icon Poster TUPHA195 [6.514 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA195  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)