Author: Brys, T.
Paper Title Page
TUPHA141 Integration of Sample Environment Systems at ESS 741
 
  • A. Pettersson, D.P. Brodrick, T. Brys, M.A. Hartl
    ESS, Lund, Sweden
 
  The European Spallation Source ERIC (ESS) will consist of 22 different neutron instruments. Each instrument is able to use a large variety of devices to control the environment parameters of the sample during the experiments. Users must be able to control this equipment and the instruments as well as storing and retrieving experiment data. For this purpose, Experimental Physics and Industrial Control System (EPICS) will be used as the backbone control system. This work shows a typical use case where a Sample Environment System (SES) comprised by a Closed Cycle Refrigerator (CCR), spectrometer, temperature and pressure controller has been integrated into the ESS control system, from hardware to user interface.  
poster icon Poster TUPHA141 [9.247 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA141  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBPL01 EPICS Architecture for Neutron Instrument Control at the European Spallation Source 1043
 
  • D.P. Brodrick, T. Brys, T. Korhonen, J.E. Sparger
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) are currently developing a suite of fifteen neutron instruments, the first eight of which will be available for routine scientific use by 2023. The instrument control system will be distributed through three layers: local controllers for individual instrument components; Experimental Physics and Industrial Control System (EPICS) software to implement higher level logic and act as a hardware abstraction layer; and an Experiment Control Program (ECP) which has an executive role, interacting with instrument components via the EPICS layer. ESS are now actively designing and prototyping the EPICS controls architecture for the neutron instruments, including systems which interface to core instrument components such as motion control systems, sample environment equipment, neutron choppers, instrument Programmable Logic Controller (PLC) systems, and the interfaces to the ECP. Prototyping activities have been executed in an integrated and coordinated manner to demonstrate the EPICS controls architecture in an environment representative of the neutron instruments to which the architecture will ultimately be applied.  
video icon Talk as video stream: https://youtu.be/eRSLBMHqQLM  
slides icon Slides WEBPL01 [6.972 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-WEBPL01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)