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• This concurrent processing must be properly 
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What happens when all flows converge? 
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1- Some background about the Disruptor 
 

• Created by LMAX, a trading company, to build a  high performance Forex 
exchange 
 

• Is the result of different trials and errors 
 

• Challenges the idea that “CPUs are not getting any faster” 
 

• Designed to take advantage of the architecture of modern CPUs, following 
the concept of “mechanical sympathy” 
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1 cache line =  64 bytes 
(on modern x86) 
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2 - Disruptor architecture 

 
• What is it? 

 
 Can be viewed as a very efficient FIFO bounded queue 

 
 A data structure to pass data between threads, designed to avoid 

contention 
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The mighty ring buffer 

• Represented internally as an array  caches gets prefetched 
• The sequence number is a padded long  no false sharing 
• The memory visibility relies on the volatile sequence number  no locks 
• Slots are preallocated  no garbage collection 

10 9 
8 

7 

6 

5 

4 

3 
2 

1 
24 
 

23 22 
21 

20 
19 

18 

17 

16 
15 

14 
13 

12 11 

Producer 

13 

Consumer 

4 

14 

5 



21/10/2015 WEB3O03 38 

Main differences compared to a queue 



21/10/2015 WEB3O03 39 

Main differences compared to a queue   
  Latency and jitter reduced to a minimum 



21/10/2015 WEB3O03 40 

Main differences compared to a queue   
  Latency and jitter reduced to a minimum 

 
  No garbage collection 



21/10/2015 WEB3O03 41 

Main differences compared to a queue   
  Latency and jitter reduced to a minimum 

 
  No garbage collection 

 
  Can have multiple consumers organized in a 

graph of dependency 



21/10/2015 WEB3O03 42 

Main differences compared to a queue   
  Latency and jitter reduced to a minimum 

 
  No garbage collection 

 
  Can have multiple consumers organized in a 

graph of dependency 
 
 
 
 

 
 Consumers can use batching to catch up with 

producers 
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Benefits for the architecture 
  

  Performance 
 No locks, no garbage collection, CPU friendly 

 
  Determinism 
   The order in which events were processed is known 
 Messages can be replayed to rebuild the server state 

 
  Simplification of the code base 

 Since the business logic runs on a single thread, there is no 
 need to worry about concurrency  
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3 – The Disruptor in CESAR 

 Each event received from hardware is stored on the ring 
buffer 

 
 For each stream of data, the last value is kept 

 
 We make use of batching 

 
 At the end of a batch, the business logic is triggered and 
executed on a single thread 

 
 Publish the new states over the network, making sure that 
we do not block the Disruptor thread if the message broker is 
down 

Motor Detector Power Converter 

State A State B 
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Conclusions  
• The Disruptor, a tool from the world of finance, fits 

really well in an Accelerator control system 
 

• It simplified the CERN CESAR code base while 
handling the flow of data more efficiently 
 

• It is easily integrated in an existing design to replace a 
queue or a full pipeline of queues 

 
• The main challenge faced was to switch the 

developers’ mind-set to think in asynchronous terms 
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Useful Links 
• The Disruptor main page with an introduction and code samples: 
http://lmax-exchange.github.io/disruptor 

 
• Presentation of the Disruptor at Qcon 
http://www.infoq.com/presentations/LMAX 

 
• An article from Martin Fowler: 
http://martinfowler.com/articles/lmax.html 

 
• A useful presentation on Latency by Gil Tene who shows that most of 

what we measure during performance test is wrong: 
http://www.infoq.com/presentations/latency-pitfalls 
 
• New Async logger in Log4J 2 
http://logging.apache.org/log4j/2.x/manual/async.html 
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