

Disruptor
Using High Performance,
Low Latency Technology in the
CERN Control System

21/10/2015 2

ICALEPCS 2015

21/10/2015 3

The problem at hand

WEB3O03

21/10/2015 4

• CESAR is used to control the devices in
CERN experimental areas

The problem at hand
Motor Detector Power Converter

CESAR
Server

WEB3O03

21/10/2015 5

• CESAR is used to control the devices in
CERN experimental areas

• These devices produce 2500 event streams

The problem at hand
Motor Detector Power Converter

CESAR
Server

x 2500

WEB3O03

21/10/2015 6

• CESAR is used to control the devices in
CERN experimental areas

• These devices produce 2500 event streams

• The business logic on the CESAR server
combines the data coming from these streams
to calculate device states

The problem at hand
Motor Detector Power Converter

CESAR
Server

x 2500

State
Device

A

State
Device

B

State
Device

C

WEB3O03

21/10/2015 7

• CESAR is used to control the devices in
CERN experimental areas

• These devices produce 2500 event streams

• The business logic on the CESAR server
combines the data coming from these streams
to calculate device states

• This concurrent processing must be properly
synchronized

The problem at hand
Motor Detector Power Converter

CESAR
Server

x 2500

State
Device

A

State
Device

B

State
Device

C

WEB3O03

21/10/2015 WEB3O03 8

What happens when all flows converge?

21/10/2015 WEB3O03 9

21/10/2015 WEB3O03 10

21/10/2015 WEB3O03 11

21/10/2015 WEB3O03 12

1- Some background about the Disruptor

21/10/2015 WEB3O03 13

1- Some background about the Disruptor

• Created by LMAX, a trading company, to build a high performance Forex
exchange

21/10/2015 WEB3O03 14

1- Some background about the Disruptor

• Created by LMAX, a trading company, to build a high performance Forex
exchange

• Is the result of different trials and errors

21/10/2015 WEB3O03 15

1- Some background about the Disruptor

• Created by LMAX, a trading company, to build a high performance Forex
exchange

• Is the result of different trials and errors

• Challenges the idea that “CPUs are not getting any faster”

21/10/2015 WEB3O03 16

1- Some background about the Disruptor

• Created by LMAX, a trading company, to build a high performance Forex
exchange

• Is the result of different trials and errors

• Challenges the idea that “CPUs are not getting any faster”

• Designed to take advantage of the architecture of modern CPUs, following
the concept of “mechanical sympathy”

21/10/2015 WEB3O03 17

Feed the cores – avoid cache misses

So
ck

et

Core 1

L1 Cache

L2 Cache

L3 Cache

Core 2

L1 Cache

L2 Cache

RAM

64 KB

256 KB

1 to 20 MB

Socket Interconnect

21/10/2015 WEB3O03 18

Feed the cores – avoid cache misses

So
ck

et

Core 1

L1 Cache

L2 Cache

L3 Cache

Core 2

L1 Cache

L2 Cache

RAM

L1 Cache 1 ns 64 KB

256 KB

1 to 20 MB

Socket Interconnect

21/10/2015 WEB3O03 19

Feed the cores – avoid cache misses

So
ck

et

Core 1

L1 Cache

L2 Cache

L3 Cache

Core 2

L1 Cache

L2 Cache

RAM

L1 Cache

L2 Cache

1 ns

3 ns

64 KB

256 KB

1 to 20 MB

Socket Interconnect

21/10/2015 WEB3O03 20

Feed the cores – avoid cache misses

So
ck

et

Core 1

L1 Cache

L2 Cache

L3 Cache

Core 2

L1 Cache

L2 Cache

RAM

L3 Cache

L1 Cache

L2 Cache

1 ns

3 ns

12 ns

64 KB

256 KB

1 to 20 MB

Socket Interconnect

21/10/2015 WEB3O03 21

Feed the cores – avoid cache misses

So
ck

et

Core 1

L1 Cache

L2 Cache

L3 Cache

Core 2

L1 Cache

L2 Cache

RAM

L3 Cache

L1 Cache

L2 Cache

RAM

1 ns

3 ns

12 ns

65 ns

64 KB

256 KB

1 to 20 MB

Socket Interconnect

21/10/2015 WEB3O03 22

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X

21/10/2015 WEB3O03 23

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X

21/10/2015 WEB3O03 24

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X’ X

21/10/2015 WEB3O03 25

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X’

Y X’

X

21/10/2015 WEB3O03 26

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X’

Y X’

X

21/10/2015 WEB3O03 27

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X’

Y X’

X

21/10/2015 WEB3O03 28

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X’

Y X’

X

21/10/2015 WEB3O03 29

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y

1 cache line = 64 bytes
(on modern x86)

The solution?

21/10/2015 WEB3O03 30

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y

1 cache line = 64 bytes
(on modern x86)

The solution? Padding

P P P P P P P P P P

21/10/2015 WEB3O03 31

2 - Disruptor architecture

• What is it?

 Can be viewed as a very efficient FIFO bounded queue

 A data structure to pass data between threads, designed to avoid

contention

21/10/2015 WEB3O03 32

The mighty ring buffer

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

21/10/2015 WEB3O03 33

The mighty ring buffer

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

14

5

21/10/2015 WEB3O03 34

The mighty ring buffer

• Represented internally as an array caches gets prefetched

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

14

5

21/10/2015 WEB3O03 35

The mighty ring buffer

• Represented internally as an array caches gets prefetched
• The sequence number is a padded long no false sharing

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

14

5

21/10/2015 WEB3O03 36

The mighty ring buffer

• Represented internally as an array caches gets prefetched
• The sequence number is a padded long no false sharing
• The memory visibility relies on the volatile sequence number no locks

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

14

5

21/10/2015 WEB3O03 37

The mighty ring buffer

• Represented internally as an array caches gets prefetched
• The sequence number is a padded long no false sharing
• The memory visibility relies on the volatile sequence number no locks
• Slots are preallocated no garbage collection

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

14

5

21/10/2015 WEB3O03 38

Main differences compared to a queue

21/10/2015 WEB3O03 39

Main differences compared to a queue
 Latency and jitter reduced to a minimum

21/10/2015 WEB3O03 40

Main differences compared to a queue
 Latency and jitter reduced to a minimum

 No garbage collection

21/10/2015 WEB3O03 41

Main differences compared to a queue
 Latency and jitter reduced to a minimum

 No garbage collection

 Can have multiple consumers organized in a

graph of dependency

21/10/2015 WEB3O03 42

Main differences compared to a queue
 Latency and jitter reduced to a minimum

 No garbage collection

 Can have multiple consumers organized in a

graph of dependency

 Consumers can use batching to catch up with

producers

21/10/2015 WEB3O03 43

Benefits for the architecture

21/10/2015 WEB3O03 44

Benefits for the architecture

 Performance
 No locks, no garbage collection, CPU friendly

21/10/2015 WEB3O03 45

Benefits for the architecture

 Performance
 No locks, no garbage collection, CPU friendly

 Determinism
 The order in which events were processed is known
 Messages can be replayed to rebuild the server state

21/10/2015 WEB3O03 46

Benefits for the architecture

 Performance
 No locks, no garbage collection, CPU friendly

 Determinism
 The order in which events were processed is known
 Messages can be replayed to rebuild the server state

 Simplification of the code base

 Since the business logic runs on a single thread, there is no
 need to worry about concurrency

21/10/2015 WEB3O03 47

3 – The Disruptor in CESAR

21/10/2015 WEB3O03 48

3 – The Disruptor in CESAR

 Each event received from hardware is stored on the ring
buffer

Motor Detector Power Converter

21/10/2015 WEB3O03 49

3 – The Disruptor in CESAR

 Each event received from hardware is stored on the ring
buffer

 For each stream of data, the last value is kept

Motor Detector Power Converter

21/10/2015 WEB3O03 50

3 – The Disruptor in CESAR

 Each event received from hardware is stored on the ring
buffer

 For each stream of data, the last value is kept

 We make use of batching

Motor Detector Power Converter

21/10/2015 WEB3O03 51

3 – The Disruptor in CESAR

 Each event received from hardware is stored on the ring
buffer

 For each stream of data, the last value is kept

 We make use of batching

 At the end of a batch, the business logic is triggered and
executed on a single thread

Motor Detector Power Converter

State A State B

21/10/2015 WEB3O03 52

3 – The Disruptor in CESAR

 Each event received from hardware is stored on the ring
buffer

 For each stream of data, the last value is kept

 We make use of batching

 At the end of a batch, the business logic is triggered and
executed on a single thread

 Publish the new states over the network, making sure that
we do not block the Disruptor thread if the message broker is
down

Motor Detector Power Converter

State A State B

21/10/2015 WEB3O03 53

Conclusions
• The Disruptor, a tool from the world of finance, fits

really well in an Accelerator control system

• It simplified the CERN CESAR code base while
handling the flow of data more efficiently

• It is easily integrated in an existing design to replace a
queue or a full pipeline of queues

• The main challenge faced was to switch the

developers’ mind-set to think in asynchronous terms

21/10/2015 WEB3O03 54

Useful Links
• The Disruptor main page with an introduction and code samples:
http://lmax-exchange.github.io/disruptor

• Presentation of the Disruptor at Qcon
http://www.infoq.com/presentations/LMAX

• An article from Martin Fowler:
http://martinfowler.com/articles/lmax.html

• A useful presentation on Latency by Gil Tene who shows that most of

what we measure during performance test is wrong:
http://www.infoq.com/presentations/latency-pitfalls

• New Async logger in Log4J 2
http://logging.apache.org/log4j/2.x/manual/async.html

http://lmax-exchange.github.io/disruptor
http://lmax-exchange.github.io/disruptor
http://lmax-exchange.github.io/disruptor
http://www.infoq.com/presentations/LMAX
http://martinfowler.com/articles/lmax.html
http://www.infoq.com/presentations/latency-pitfalls
http://www.infoq.com/presentations/latency-pitfalls
http://www.infoq.com/presentations/latency-pitfalls
http://logging.apache.org/log4j/2.x/manual/async.html

