}@@ A Generic Framework for
> Rapid Development of

OPC UA Servers

P. Nikiel, B. Farnham, S. Schlenker, C.-V. Soare
CERN, Switzerland

V. Filimonov

PNPI, Russia @
D. Abalo Miron \ATLAS
\ &

University of Oviedo, Spain _
d i a collaboration of j4 EXPERIMENT ENGINEERING

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia Stefan Schlenker, CERN

Motivation: Middleware Challenges

for Device Integration at LHC Detector Controls

» Scale: 10°% parameters, ~100 device types, >50 developers
» Standard middleware for back-end integration was OPC DA
= Limited to Windows platform, closed source, discontinued...

1. Commonly supported COTS:
e Power supplies, VME crates, PLCs...
e Suppliers provide OPC DA servers

2. Custom devices:
e Custom built electronics or front-end power supplies

e Sub-system experts use solutions of their choice, significant effort
in development and maintenance, and middleware expertise
required

e Developers have often limited software knowledge and change
frequently

= Problems with stability, scalability, maintainability, diagnostics
of existing systems and big effort for new systems

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia

Controls hierarchy -

Fieldbus

— fossu Jususal vssia] s] o0]

SCADA: :
WinCC OA Client

a

Rack Server

\ 4

‘ Devicerbus Middleware

Interface

7 3

\ 4

Diagnostics

Productivity
Collaboration

OPC Unified Architecture SHOPC =

Industrial machine-to-machine communication protocol for interoperability Unified Architecture
» OO Information modeling capabillities

» Enhanced security, scalability

» Supports buffering, per-connection heartbeats and timeouts, discovery

» Multi-platform implementation, more lightweight @ embedding possible

» Commercial SDKs available with stack from OPC foundation

» Meanwhile also open source stack implementations (C, C++, Java, JS, Python)

Vendor Specific Model

< Solves already some problems

» Still requires expertise and effort in
programming with OPC UA ...

Specifications of Information Models
of other Organizations

S|ISPON
uonewIoju|

Information Access 2 @)

2 Data Model and Services 2 W U
= =

2 @O

2 Transport OPC UA Data Model ? © C

Protocol Mappings Modeling Rules @ >

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia Stefan Schlenker, CERN

OPC Unified Architecture

Industrial machine-to-machine communication protocol for interoperability Unified Architecture
» OO Information modeling capabillities

» Enhanced security, scalability

» Supports buffering, per-connection heartbeats and timeouts, discovery

» Multi-platform implementation, more lightweight @ embedding possible

» Commercial SDKs available with stack from OPC foundation

» Meanwhile also open source stack implementations (C, C++, Java, JS, Python)

Openess
Productivity
Collaboration

Vendor Specific Model

< Solves already some problems

» Still requires expertise and effort in
programming with OPC UA ...

] [|] s

Specifications of Information Models
of other Organizations

SISPON
uoleuwoju|

Information Access s @) _ _
g e Sl e o < Maybe provide development environment and
5 Transport OPC UA Data Model | | ®C generate OPC UA related code?
Protocol Mappings Modeling Rules

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia Stefan Schlenker, CERN

Quick opcUA Server generAtion fRamework

A tool for rapid C++ server development

» Generates executable OPC UA server from target object-oriented information model
» Where does rapidity come from?

e Automatic generation of OPC UA related source code

e Establishing common architecture and convention

e Provides many useful components to reduce development effort
» What does it base on?

e OPC UA toolkit, currently
Unified Automation OPC UAclient OPC UA client OPC UA client
l | |

e A number of open source

libraries and tools OPC-UA server toolkit (C++) — Unified Automation
: Common
Security namespace Server
XML (X509 . amesp . Embedded
configuration certificate Logging Items an . meta—l python
OPC UA server namespace information

handling)

utilities

Device logic

[I]
XML config file Hardware Hardware Remote process

15t ICALEPCS, 17-23th October 2015, Melbourne, Australia

Device specific logic,
: partially generated

100% application

: developer/vendor

Stefan Schlenker, CERN

Quick opcUA Server generAtion fRamework

A tool for rapid C++ server development

» Generates executable OPC UA server from target object-oriented information model
» Where does rapidity come from?

e Automatic generation of OPC UA related source code

e Establishing common architecture and convention

e Provides many useful components to reduce development effort
» What does it base on?

e OPC UA toolkit, currently
Unified Automation OPC UAclient OPC UA client OPC UA client
l | |

e A number of open source

libraries and tools OPC-UA server toolkit (C++) — Unified Automation
: Common
Security namespace Server
XML (X509 . amesp . Embedded
configuration certificate Logging Items an . meta—l python
OPC UA server namespace information

handling)

utilities

Device logic

[I]
XML config file Hardware Hardware Remote process

15t ICALEPCS, 17-23th October 2015, Melbourne, Australia

Device specific logic,
: partially generated

100% application

: developer/vendor

Stefan Schlenker, CERN

Modus Operand]

Developer benefits:

» Design file can be created using
provided XSD schema

» Roughly 50-90% of code can be
generated

» User sections of Device Logic
stubs are well separated,
merging tool simplifies re-
generation after design changes
or quasar upgrades

» CMake based build system with
pre-built toolchains for several
platforms

» Configuration file can be created
using generated XSD schema

15t ICALEPCS, 17-23th October 2015, Melbourne, Australia

(Re-)implement user sections of avices [eoeric

Choose platform, build server + test binaries
¥

SlrConfiguration File

Test, evaluate ...

Device
| ® model is OK ®

Device
® Logic is OK ®

\ 4

Generate SCADA types, instances, UA addressing

y

Stefan Schlenker, CERN

Design — Example

Y TEXTUAL CONTENT VISUALIZATION

<class name=“PowerSupplyChannel”>
<cachevariable name=“current” dataType=“Float”/>
</class>

PowerSupply

state : OpcUa_Ulnt32
<class name=“PowerSupply”’> F
e

<sourcevariable name=“state” dataType=“Int”/>
<hasobjects class=“PowerSupplyChannel” />
</class>

L
—
LL
p
O
%
L]
a

PowerSupplyChannel

welbelp parelausab-resenb

current : OpcUa_Float

) Root
=110 :Objects
+ g Server
<PowerSupply name=“powerSupplyl”> 2 & powerSupplyl
<PowerSupplyChannel name=“channell”/> - i channell
<PowerSupplyChannel name=“channel2”/> @ current

-l ¢ Channel2
</PowerSupply> @ current

+- €] state
+- | Types
+- 1) Wiews

CONFIGURATION FILE
JUSII9 VN DdO dwinuny

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia Stefan Schlenker, CERN

Design — Example

Schema-aware XML editor (Eclipse plugin)

Node

222 xml

= [e] d:design

projectShortName

xmins:d

xmins:xsi

xsi:schemalocation

[e] d:class

name

< [e] d:cachevariable
name
addressSpaceWrite
initializeWith
nullPalicy
dataType

[e] d:class

name

— [g] d:hasobjects
instantiateUsing
class

= [e] d:sourcevariable
dataType
name
addressSpaceRead
addressSpaceReadlUseMutex
addressSpaceWriteUseMutex

[e] d:root

DESIGN FILE

CONFIGURATION FILE

Design|Source

Content
version="1.0" encoding="UTF-8"

PowerSupplies
http:/fwww.example.org/Design
http:/fwww.w3.0rg/2001/XMLSchema-instance
http:/fwww.example.org/Design Design.xsd

PowerSupplyChannel

current
forbidden
configuration
nullallowed
OpcUa_Double

PowerSupply

configuration
PowerSupplyChannel

OpcUa_UInt32
state
asynchronous
no

forbidden
asynchronous

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia

VISUALIZATION

PowerSupply
state : OpcUa_Ulnt32

PowerSupplyChannel

welbelp parelausab-resenb

current : OpcUa_Float

) Root
=112 Objects
+ gk Server
= o powersupplyl
=l g% Channell
& current
=l g% Channel2
& current
+ -] state
+- | Types
+) Views

JUSII9 VN DdO dwinuny

Stefan Schlenker, CERN

Tools

Design visualization: UML generator

Embedded python Platform toolchains: Linux x86 64, i686,

ARM (Raspbian), ARM (Zynq), Windows

Use hon scripts in device logic @ user
Pyt P g 32/64

XML configuration writes in safe language

variable-based scripts for processing in
infout direction

: Easy RPM generator
Generated schema < simple

creation Generated program to test full address

validation tool = verify design global scripts with address space access Space

constraints Documentation: doxygen

Generated loader for object Logging Software management: consistency

instantiation and runtime access to checker helps using versioning system

configuration Provides APl and exchangeable
back-end

Component based
Protocol components

CAN devices and interfaces Server meta-information
SNMP module # Items, memory usage, thread pool size, run time ...

IPbus module More to come...

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia Stefan Schlenker, CERN

1 Components & Tools
A\

Embedded python

Use python scripts in device logic & user
XML configuration writes in safe language

variable-based scripts for processing in

Generated schema 2 simple : L
infout direction

creation

Validation tool 9 verify design global scripts with address space access

constraints

Generated loader for object Logging
instantiation and runtime access to

configuration Provides APl and exchangeable
back-end

Component based

Protocol components —

CAN devices and interfaces :

SNMP module £ ltems. me \ \-

H \

IPbus module More to come... .§

151 ICALEPCS, 17-23th October 2015, Melbourne, Australia Stefan Schlenker, CERN

State and Usage

Quasar v1.0

» Available for collaborators via SVN

» Documentation: inline documentation and video tutorials
» Export to GitHub in progress (free open source license)

Collaboration with equipment vendors

» Several vendors interested on using quasar for their hardware in
collaboration with CERN experts

» Should facilitate problem diagnostics and maintenance

quasar—made SErvers
» Three servers in production in ATLAS experiment controls

» >5 In test stage or development, to be used for new projects or
replacing deprecated OPC DA solutions

» Several users across CERN, provided positive feedback

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia

CANopen via CAN
IPbus via TCP/IP
SNMP via TCP/IP

VME crates via CAN
FPGA board via CAN
S7 TSPP PLC via TCP/IP
CAEN HV power supplies via TCP/IP
Iseg HV power supplies via TCP/IP
Rad-hard ASIC monitoring via optical link
FPGA (Zynq) via TCP/IP
HV-Micro via CAN

Stefan Schlenker, CERN

Conclusions

[

{ ” f’ y 7
VLW (‘ N &
W\ &\ //{{’/// &

\\Qll::."’{/t,(

X generates OPC UA servers from information model

» Development and maintenance effort greatly reduced due to:
e Coherency: design file as single point of input
e Knowledge requirements on OPC UA layers or SDKs minimal
e Programming reduced to device logic in C++, python
e Lots of pluggable components
e Multiple platforms supported out-of-the-box
e Higher controls layer integration facilitated

» External equipment suppliers are willing to use it

2 Looks promising that we can meet the middleware challenges!

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia Stefan Schlenker, CERN

Conclusions

/J‘
‘o
ANYS

A generates OPC UA servers from information model

» Development and maintenance effort greatly reduced due to:
e Coherency: design file as single point of input
e Knowledge requirements on OPC UA layers or SDKs minimal
e Programming reduced to device logic in C++, python
e Lots of pluggable components
e Multiple platforms supported out-of-the-box
e Higher controls layer integration facilitated

» External equipment suppliers are willing to use it

2 Looks promising that we can meet the middleware challenges!

15t ICALEPCS, 17-23th October 2015, Melbourne, Australia Stefan Schlenker, CERN

BACKUP

15t ICALEPCS, 17-23th October 2015, Melbourne, Australia Stefan Schlenker, CERN

Transforming Information Model

Model condensed into Design File using OO approach
» Classes, relations between classes

» Variables which belong to classes, main types
e Cache variables: in-memory data access
e Source variables: asynchronous and synchronous device access

» Various class and variable attributes+properties such as data type, read-only or writable, ...

Code and schema generation
» Based on XSLT transforms

(m--------------- Design file

Configuration module Device logic

Configuration.xsd Module build information
Device class header

Address space module Utilities

Address Space class header Visualization (UML, ...)

Configuration.{hxx,cxx} R EE G

DRoot.{cpp,h} -
Configurator.cpp
Embedded python

Source Variables glue logic SCADA integration
Information model Code management/versioning

Module build information Build system, Packaging

————— generated automatically on build <4— overwrites —
SW management SCADA scripting
generated on request <—— merges

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia Stefan Schlenker, CERN

Internal handling of variables (generated) — Sequence diagrams

Hardware Device logic

Device Device Logic Object
handleUpdate()

Device-specific message or function call

device updates

data

) (CacheVariable \

SourceVariable

Device Device Logic Object

Device specific
request message
Or asynchronous
function call

devicereplies

to the request

handleUpdate()

Device specific reply
message

Or asynchronous
function call

15th ICALEPCS, 17-23th October 2015, Melbourne, Australia

Generated AddressSpace

Address Space Object Address Space

Address Space

SourceVariable
IO Manager

beginRead()

Stefan Schlenker, CERN

