
Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

P. Nikiel, B. Farnham, S. Schlenker, C.-V. Soare 
CERN, Switzerland 

V. Filimonov 
PNPI, Russia 

D. Abalo Miron 
University of Oviedo, Spain 

A Generic Framework for 

Rapid Development of 

OPC UA Servers 

a collaboration of 
& 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

► Scale: 106 parameters, ~100 device types, >50 developers 

► Standard middleware for back-end integration was OPC DA 

 Limited to Windows platform, closed source, discontinued… 

1. Commonly supported COTS: 

 Power supplies, VME crates, PLCs… 

 Suppliers provide OPC DA servers 

2. Custom devices: 

 Custom built electronics or front-end power supplies 

 Sub-system experts use solutions of their choice, significant effort 
in development and maintenance, and middleware expertise 
required 

 Developers have often limited software knowledge and change 
frequently 

 

 Problems with stability, scalability, maintainability, diagnostics 
of existing systems and big effort for new systems 

Motivation: Middleware Challenges  
for Device Integration at LHC Detector Controls 

ELMB 

Rack Server 

D
e
v
ic

e
 

Device/bus 

 Interface 

SCADA:  

WinCC OA 

F
ie

ld
b

u
s
 

Controls hierarchy 

Diagnostics 

Middleware 

Client 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

OPC Unified Architecture 
Industrial machine-to-machine communication protocol for interoperability 

►OO Information modeling capabilities 

►Enhanced security, scalability 

►Supports buffering, per-connection heartbeats and timeouts, discovery 

►Multi-platform implementation, more lightweight  embedding possible 

►Commercial SDKs available with stack from OPC foundation 

►Meanwhile also open source stack implementations (C, C++, Java, JS, Python) 

 

OPC UA Data Model 
Modeling Rules 

Transport 
Protocol Mappings 

S
e

c
u

ri
ty

 

Information Access 
Data Model and Services 

R
o

b
u

s
tn

e
s

s
 

O
P

C
 U

A
 

B
a
s
e

 

Data 

Access 

Alarms 

Conditions 

Historical 

Access 
Programs 

Specifications of Information Models 

of other Organizations 

Vendor Specific Model In
fo

rm
a
tio

n
 

M
o
d
e
ls

 

Solves already some problems 

► Still requires expertise and effort in 
programming with OPC UA … 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

OPC Unified Architecture 
Industrial machine-to-machine communication protocol for interoperability 

►OO Information modeling capabilities 

►Enhanced security, scalability 

►Supports buffering, per-connection heartbeats and timeouts, discovery 

►Multi-platform implementation, more lightweight  embedding possible 

►Commercial SDKs available with stack from OPC foundation 

►Meanwhile also open source stack implementations (C, C++, Java, JS, Python) 

 

OPC UA Data Model 
Modeling Rules 

Transport 
Protocol Mappings 

S
e

c
u

ri
ty

 

Information Access 
Data Model and Services 

R
o

b
u

s
tn

e
s

s
 

O
P

C
 U

A
 

B
a
s
e

 

Data 

Access 

Alarms 

Conditions 

Historical 

Access 
Programs 

Specifications of Information Models 

of other Organizations 

Vendor Specific Model In
fo

rm
a
tio

n
 

M
o
d
e
ls

 

Solves already some problems 

► Still requires expertise and effort in 
programming with OPC UA … 

Maybe provide development environment and 

generate OPC UA related code? 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

OPC-UA server toolkit (C++) – Unified Automation 

A tool for rapid C++ server development 

► Generates executable OPC UA server from target object-oriented information model 

► Where does rapidity come from? 

 Automatic generation of OPC UA related source code 

 Establishing common architecture and convention  

 Provides many useful components to reduce development effort 

► What does it base on? 

 OPC UA toolkit, currently                                                                                                     
Unified Automation 

 A number of open source                                                                                                     
libraries and tools 

Quick opcUA Server generAtion fRamework 

Logging 

Security 

(X509 

certificate 

handling) 

XML 

configuration 

Server 

meta-

information 

Device logic 

Device access layer 

Common 

namespace 

items and 

namespace 

utilities 

XML config file 

OPC UA client OPC UA client OPC UA client 

Hardware Hardware Remote process 

Commercial toolkit 

Provided or generated 

components 

Device specific logic, 

partially generated 

100% application 

developer/vendor 

Embedded 

python 
OPC UA server 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

OPC-UA server toolkit (C++) – Unified Automation 

A tool for rapid C++ server development 

► Generates executable OPC UA server from target object-oriented information model 

► Where does rapidity come from? 

 Automatic generation of OPC UA related source code 

 Establishing common architecture and convention  

 Provides many useful components to reduce development effort 

► What does it base on? 

 OPC UA toolkit, currently                                                                                                     
Unified Automation 

 A number of open source                                                                                                     
libraries and tools 

Quick opcUA Server generAtion fRamework 

Logging 

Security 

(X509 

certificate 

handling) 

XML 

configuration 

Server 

meta-

information 

Device logic 

Device access layer 

Common 

namespace 

items and 

namespace 

utilities 

XML config file 

OPC UA client OPC UA client OPC UA client 

Hardware Hardware Remote process 

Commercial toolkit 

Provided or generated 

components 

Device specific logic, 

partially generated 

100% application 

developer/vendor 

Embedded 

python 
OPC UA server 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

Modus Operandi 

END 

START 

Get+understand model of target device/system 

Fill/edit Design File 

(Re-)generate Device Logic stubs and variable handling 

(Re-)implement user sections of Device Logic 

Device 

model is OK 

Device 

Logic is OK 

Generate UA address space + configuration module 

Choose platform, build server + test binaries 

Test, evaluate … 

Fill Configuration File 

Developer benefits: 

► Design file can be created using 
provided XSD schema 

► Roughly 50-90% of code can be 
generated 

► User sections of Device Logic 
stubs are well separated, 
merging tool simplifies re-
generation after design changes 
or quasar upgrades 

► CMake based build system with 
pre-built toolchains for several 
platforms 

► Configuration file can be created 
using generated XSD schema 

Generate SCADA types, instances, UA addressing 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

TEXTUAL CONTENT VISUALIZATION 

D
E

S
IG

N
 F

IL
E

 
C

O
N

F
IG

U
R

A
T

IO
N

 F
IL

E
 

q
u

a
s
a

r-g
e

n
e

ra
te

d
 d

ia
g

ra
m

 

<class name=“PowerSupplyChannel”> 

 <cachevariable name=“current” dataType=“Float”/> 

</class> 

 

<class name=“PowerSupply”> 

 <sourcevariable name=“state” dataType=“Int”/> 

 <hasobjects class=“PowerSupplyChannel”/> 

</class> 

<PowerSupply name=“powerSupply1”> 

 <PowerSupplyChannel name=“channel1”/> 

 <PowerSupplyChannel name=“channel2”/> 

</PowerSupply> 

ru
n

tim
e

 O
P

C
 U

A
 c

lie
n

t 
Design – Example 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

TEXTUAL CONTENT VISUALIZATION 

D
E

S
IG

N
 F

IL
E

 
C

O
N

F
IG

U
R

A
T

IO
N

 F
IL

E
 

q
u

a
s
a

r-g
e

n
e

ra
te

d
 d

ia
g

ra
m

 

<class name=“PowerSupplyChannel”> 

 <cachevariable name=“current” dataType=“Float”/> 

</class> 

 

<class name=“PowerSupply”> 

 <sourcevariable name=“state” dataType=“Int”/> 

 <hasobjects class=“PowerSupplyChannel”/> 

</class> 

<PowerSupply name=“powerSupply1”> 

 <PowerSupplyChannel name=“channel1”/> 

 <PowerSupplyChannel name=“channel2”/> 

</PowerSupply> 

ru
n

tim
e

 O
P

C
 U

A
 c

lie
n

t 
Design – Example 

Schema-aware XML editor (Eclipse plugin) 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

Embedded python 

Use python scripts in device logic  user 

writes in safe language  

variable-based scripts for processing in 

in/out direction 

global scripts with address space access 

Server meta-information 

# Items, memory usage, thread pool size, run time … 

Components & Tools 

Logging 

Provides API and exchangeable 

back-end 

Component based 

XML configuration 

Generated schema  simple 

creation 

Validation tool  verify design 

constraints 

Generated loader for object 

instantiation and runtime access to 

configuration 

Tools 

Design visualization: UML generator 

Platform toolchains: Linux x86_64, i686, 

ARM (Raspbian), ARM (Zynq), Windows 

32/64 

Easy RPM generator 

Generated program to test full address 

space 

Documentation: doxygen 

Software management: consistency 

checker helps using versioning system 

Protocol components 

CAN devices and interfaces 

SNMP module 

IPbus module More to come… 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

Embedded python 

Use python scripts in device logic  user 

writes in safe language  

variable-based scripts for processing in 

in/out direction 

global scripts with address space access 

Server meta-information 

# Items, memory usage, thread pool size, run time … 

Components & Tools 

Logging 

Provides API and exchangeable 

back-end 

Component based 

XML configuration 

Generated schema  simple 

creation 

Validation tool  verify design 

constraints 

Generated loader for object 

instantiation and runtime access to 

configuration 

Tools 

Design visualization: UML generator 

Platform toolchains: Linux x86_64, i686, 

ARM (Raspbian), ARM (Zynq), Windows 

32/64 

Easy RPM generator 

Generated program to test full address 

space 

Documentation: doxygen 

Software management: consistency 

checker helps using versioning system 

Protocol components 

CAN devices and interfaces 

SNMP module 

IPbus module More to come… 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

State and Usage 

Quasar v1.0 

► Available for collaborators via SVN 

► Documentation: inline documentation and video tutorials 

► Export to GitHub in progress (free open source license) 
 

Collaboration with equipment vendors 

► Several vendors interested on using quasar for their hardware in 
collaboration with CERN experts 

► Should facilitate problem diagnostics and maintenance 
 

quasar-made servers 

► Three servers in production in ATLAS experiment controls 

► >5 in test stage or development, to be used for new projects or 
replacing deprecated OPC DA solutions 

► Several users across CERN, provided positive feedback 

CANopen via CAN 

IPbus via TCP/IP 

SNMP via TCP/IP  

 

VME crates via CAN 

FPGA board via CAN 

S7 TSPP PLC via TCP/IP 

CAEN HV power supplies via TCP/IP 

Iseg HV power supplies via TCP/IP 

Rad-hard ASIC monitoring via optical link 

FPGA (Zynq) via TCP/IP 

HV-Micro via CAN 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

Conclusions 

► generates OPC UA servers from information model 

►Development and maintenance effort greatly reduced due to: 

Coherency: design file as single point of input 

Knowledge requirements on OPC UA layers or SDKs minimal 

Programming reduced to device logic in C++, python 

 Lots of pluggable components 

Multiple platforms supported out-of-the-box 

Higher controls layer integration facilitated 

►External equipment suppliers are willing to use it 
 

 Looks promising that we can meet the middleware challenges! 

 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

Conclusions 

► generates OPC UA servers from information model 

►Development and maintenance effort greatly reduced due to: 

Coherency: design file as single point of input 

Knowledge requirements on OPC UA layers or SDKs minimal 

Programming reduced to device logic in C++, python 

 Lots of pluggable components 

Multiple platforms supported out-of-the-box 

Higher controls layer integration facilitated 

►External equipment suppliers are willing to use it 
 

 Looks promising that we can meet the middleware challenges! 

 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

BACKUP 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

Transforming Information Model 

Model condensed into Design File using OO approach 
► Classes, relations between classes 

► Variables which belong to classes, main types 
 Cache variables: in-memory data access 

 Source variables: asynchronous and synchronous device access 

► Various class and variable attributes+properties such as data type, read-only or writable, … 

Code and schema generation 
► Based on XSLT transforms 

overwrites 

merges generated on request 

generated automatically on build 
Code XSD SCADA scripting SW management 

Device logic Address space module Configuration module 

Configuration.{hxx,cxx} 

Configuration.xsd 

Module build information 

Configurator.cpp 

Address Space class header 

Address Space class body 

Source Variables glue logic 

Information model 

Module build information 

Device class header 

Device class body 

DRoot.{cpp,h} 

Embedded python 

Utilities 

Test code 

SCADA integration 

Visualization (UML, ...) 

Code management/versioning 

Build system, Packaging 

Design file 



Stefan Schlenker, CERN 15th ICALEPCS, 17-23th October 2015, Melbourne, Australia 

Hardware Device logic Generated AddressSpace 

S
o

u
rc

e
V

a
ri

a
b

le
 

C
a
c
h

e
V

a
ri

a
b

le
 

Device 

Device 

Device Logic Object 

Device Logic Object 

device updates 

data  

Address Space Object Address Space  

Address Space  

handleUpdate() 

Device-specific message or function call 

setSomeValue() update values 

device replies 

to the request 

SourceVariable  

IO Manager 

handleUpdate() 

value sent back 

read value 

N
e
w

 I
O

 J
o

b
 

(s
e

p
a

ra
te

 t
h

re
a

d
) 

beginRead() 

Read(): 

Prepare C.V. 

Send request 

Wait on 

C.V. 

finishRead() 

C.V. is 

notified 

Device specific 

request message 

Or asynchronous 

function call 

Device specific reply 

message 

Or asynchronous 

function call 

Internal handling of variables (generated) – Sequence diagrams 


