

Development and Realization of the ESS Machine Protection Concept

Annika Nordt et al.

European Spallation Source ERIC, Lund, Sweden

www.europeanspallationsource.se ICALEPCS2015, Melbourne, Australia, 20th of October 2015

Overview

- 1. The European Spallation Source ERIC (ESS)
- 2. Damage potential of the proton beam at ESS
- 3. Machine Protection at ESS: scope and concept
- 4. Top level requirements and results from first prototypes
- 5. Governance of Machine Protection at ESS
- 6. Summary

ESS in September 2015

ESS LINAC

ESS aims to house the most powerful proton LINAC ever built

Average neutron flux is proportional to average beam power

Average beam power will be: 5MW

Average beam current: 62.5mA

Proton energy per pulse: 360kJ

Repetition rate: 14Hz

Pulse length: 2.86ms

ESS Target and Experimental Stations

Target with rotating tungsten wheel

Synchronized to 14Hz

5MW Proton Beam

At 5MW, one beam pulse has:

The same energy as a 7.2kg shot travelling at 1100km/h (Mach 0.93).

This happens 14 times per second.

Damage Potential of the Proton Beam

Assuming worst case scenario:

Proton beam impinging perpendicularly on copper or steel (2mm beam size).

Source	LEBT RFQ	MEBT DTL	Spokes	Medium ß — High ß — HEBT -	Target
Beam Energy in [MeV]	1 - 3.6	3.6 - 90	90 - 216	216 - 2000	
Melting Time in [µs]	10 - 20	20 - 200	200 - 400	>400	
Beam Stop Time in [µs]	4 - 5	5 - 20	20 - 40	>40	

Fastest reaction time required to stop proton beam is $4-5\mu s$ (within the first 50m).

This includes detecting, processing and actual stopping of the proton beam.

It's a challenging task, requiring **fast** systems!

Scope of Machine Protection at ESS

Machine Protection (MP) needs to reliably:

- **protect** the "machine" **from damage**, be it beam-induced or resulting from any other source,
- protect the "machine" from unnecessary beam-induced activation.

Machine protection will be implemented in a way to:

- minimize unnecessary down-time due to spurious trips,
- provide optimal support for failure localization,
- support all operational modes of the facility,
- avoid wrong configuration of equipment,
- support operation in degraded mode.

Functional MP Architecture Concept

BIS Concept (adapted from CERN)

Top Level Requirements

Requirements which are not trivial.

Two independent and diverse redundant beam interlock systems:

- Fast Beam Interlock FBI System/ FPGA based
- Slow Beam Interlock SBI System/ PLC based

First Prototype of the FBI System

Interface Module Master Module

Actuator Interface Module

Initial Results from FMEDA of the FBIS Prototype

The **challenge** is not only to build a Beam Interlock System, but to **make sure the systems** connected to it provide **sufficient protection integrity.**

Traceability of requirements and standardized documentation of all systems relevant for Machine Protection is very important.

Governance of Machine Protection

Machine Protection Committee: Take on responsibility and take decisions

Summary

Presented scope and concept for ESS Machine Protection.

Different concept ideas for the BIS are currently under investigation.

First prototyping started.

A decision making body is helpful when implementing Machine Protection at a complex facility like ESS.

Special thanks to the CERN team (R. Schmidt et al.) and the ZHAW team (C. Hilbes et al.).