Design and Implementation of the Fast Protection System for CSNS

D. P. Jin, P. Zhu, Y.L. Zhang

Dongguan Campus, IHEP, China

Oct. 20, 2015

ICALEPCS 2015, Melbourne

jindp@ihep.ac.cn

Outline

- Brief introduction to CSNS (China Spallation Neutron Source)
- Fundamental safety requirements
- Basic design considerations and rules
- Overall design
- Design and implementation of FPS(Fast Protection System)

Outline 0

• Next to do

• Summary

Brief introduction to CSNS

Fundamental safety requirements

 To prevent permanent damage to materials due to a heat deposition exceeding their thermal stress limit of accelerator components along the beam line, especially for copper in DTL (Drift Tube LINAC).

Fundamental safety requirements

Time to reach thermal stress limit on surface

Basic design considerations and rules

- Reliable and mature industrial and commercial products should be used when available.
- All interfaces should be fail-safe or online realtime checked to make sure the reliability.
- Interlock logic should be as simple as possible and developed with reliable tools.
- Considerations : reliability, maintainability, stability, scalability and flexibility.

Overall design Inputs classification

 Failure of components along the beam line below 50keV (before RFQ) will not bring severe damage due to the lower beam energy and the loss of H- in RFQ. These signals are delivered to MPS, a protection system of ms response time.

Overall design Inputs classification

Failure of components from RFQ to the end of DTL will possibly bring great damage, especially to the copper of the drift tubes since their small diameter. These signals are delivered to FPS. BLM (Beam Loss Monitor) signals in this region are also delivered to FPS. Two BLM signals on the LRBT are also delivered to FPS to protect the de-buncher.

散裂中子源 China Spallation Neutron Source

Overall design Distribution of BLMs

Overall design System architecture

Overall design Technique selection

•For FPS, a response time of around 5µs, low level signal and FPGA (Field Programmable Gate Array) should be used to fulfill the critical requirement, and to provide good flexibility.

Overall design Structure and distribution of FPS

How to stop the beam and recover

Sending out interlock signals to stop the **RFQ** radio frequency power, to stop the beam gate signals to all the LINAC radio frequency powers, to stop the timing signal to the ion source extraction power supply, to turn down the high voltage of the ion source power supply from 17kV to 10kV at the same time.

- To recover the RFQ radio frequency power to maintain RFQ resonance after either the timing signal of the ion source extraction power supply stopped or the high voltage of it turned down.
- To recover the timing signal of the ion source extraction power supply after its high voltage turned down.

How to stop the beam and recover

• The accelerator can recover from the interlock state after hand reset from the MPS with the faults cleared. Otherwise, beam is not permitted.

Overall design How to stop the beam and recover **FPS IS Extraction IS HV Control LLRF Beam RFQ** Power **Below 10kV?** Timing Gate Interlock Feedback Reset

Overall design How to stop the beam and recover **FPS IS Extraction IS HV Control LLRF Beam RFQ** Power **Below 10kV?** Timing Gate Interlock Feedback Reset

Overall design How to stop the beam and recover

Design and implementation of FPS

- FPGA chip XC6SLX100T-3FGG900 from Xilinx is chosen as the main component for the FPS. Total 8 GTPs (Gigabit Transceiver Port, RocketIO), maximum 480 user IOs, ~100k logic cells ...
- Central station : 6U VME 64x crate with 21 slots. Some user IOs for specific applications.

Design and implementation of FPS Signals collection in front end near interlock sources, with single core fibers for ground isolation. Signals to central stations through high speed serial links (GTP + opt. transceivers + opt. fibers) to reduce the number of fiber cores, to ease system installation, maintenance and upgrade.

散裂中子源 **China Spallation Neutron Source**

Design and implementation of FPS

Main Board

散裂中子源 China Spallation Neutron Source

Design and implementation of FPS

Cabinet front

Cabinet rear

Interlock output of each main board will transmit to the backplane, then all boards in crate receive it.

Ohine Challetion Neutron Course

Design and implementation of FPS Safety issues

- Interface fail-safe definition : Avago optical transmitter 1414 and receiver 2412 are used for interlock inputs. Normal conditions are defined as the 1414 gives light out, interlock occurs when no light.
- Periodic heart-beat function are designed to make sure the safety of the signal route from the front end collection to the main station.

Safety issues

Heart-beat signal generation in the CPLD on the daughter card of front end

Heart-beat signal check and counting in the FPGA on the main board at central station

Design and implementation of FPS Safety issues

Continuous readout and comparison of the interlock registers, the channel-mask registers and the heart-beat counters in the FPGA on the main boards at central station to make sure the proper work of the whole system, alarms will be given out when any error.

• Alarm when the VME crate power off.

Design and implementation of FPS Safety issues

 Interlock signals to the RFQ RF, the IS extraction timing, the IS extraction HV control go through independent routes from the central station. Any of which fails will not affect the others' functions.

- Auto-synchronization function of the high speed path and bit error rate.
- When both fibers of the same high speed transceiver pair are plugged in, serial data are automatically de-serialized to parallel data.
- Bit error rate test is done with pseudo random data generated in the FPGA logic.

Illustration of Bit Error Rate test

No errors in 27 hours

•Heart-beat function.

Trigger Setup -	DEV:1 MyDevic	e1 (XC6SLX100T) UNIT:0 MyILA0 (ILA)			r 🛛 🗆			Ι.
Mat	ch Unit	Function	Value	Radix	Counter	\rightarrow	Counter	ReadOut
출 <u>~ MO:TriggerPo</u>	rt0		XXX	XX_XXRX Bin	disabled			
Add Active		Trigger Condition Name	Trigger Condition Equation		Output Enable	IntLK_IN		
Del Del TriggerCondition0		TriggerCondition0	МО		Disabled			
Type: Window	-	Windows: 1	Depth: 4096	Position:	2048		Width>=150ps?	Y
Storage Qualifica	ation:	All [Data			1 I	witch/ ioons:	FintLing
Sample Buffer	r is full				REPETITIVE RUN		N	
Waveform - DE	/:1 MyDevice1 ((XC6SLX100T) UNIT:0 MyILA0 (ILA)			r 0. X			
Bus/Signal	ХО	-3 2 7 12	17 22 27 32	37 42 47	52 57			
-DataPort[4]	0 0				A			
-DataPort[5]	0 0							
-DataPort[6]	0 0					Ciana		100-00
-DataPort[7]	0 0					Signal	i wiath : "	iuuns
-DataPort[8]	0 0							
-DataPort[9]	0 0							
-DataPort[10]	1 1					ChipSo	cope San	npling
-DataPort[11]	0 0		K					
-DataPort[12]	0 0				v	CIO		
•	• • • • •							
Waveform #15 cap	tured 2015-6-4	12:01:26	Χ:	15 4 > 0: -1	Δ (Ι-0): 16		D	

•Heart-beat function.

🕘 Trigger	Setup - DEV:1 MyDe	vice1 (XC6SLX100T) UNIT:0 MyILA0	(ILA)	r 🛛 🛛			N		
M	Match Unit	Function	Value		Radix	Counter		Counter	ReadOut
<u>हे</u> <u>~ M0:Tr</u>	riggerPort0	==		XXXX_XXRX	Bin	Stop capture, before editing			
Add Del	dd Active Trigger Condition Name el TriggerCondition0		ame Tri 0	Trigger Condition Equation M0			with heartbeat		
S Туре:	Window 💌	Windows:	1 Depth: 4096	•	Position:	2048		Width>=150ns?	Y → IntLKing
Storage	Qualification:		All Data				Î		$\mathbf{\mathcal{S}}$
🔵 Samp	ble Buffer is full					REPETITIVE RUN	j L	N	
Wavefo	rm - DEV:1 MyDevice	e1 (XC6SLX100T) UNIT:0 MyILA0 (IL	A)			r 2 🛛			
Bus/Si	ignal X C	- 3 2 7	12 17 22	27 32 37	42	47 52 57			
- DataPort	1 1	0							
— DataPort	[5] 1	0							
- DataPort	1 [6]	0					Signa	l width • 1	200ns
— DataPort	1 1	0					orgina		
— DataPort	1 [8]	0							
- DataPort	. <mark>[9]</mark> 0	0					ChinS	cono Sar	opling
— DataPort	[10] 1	1					Cilipo	cope Sail	iping
- DataPort	[11] 0	0					clo	ck : 100N	IHz
- DataPort	[12] 0	0				v			
•								-	
Waveform	#139 captured 2015-	-6-4 11:56:54		X: 15	5 ◀ ▶ 0:	-1 ◀ ► Δ (X-0): 16		Pa	ige 54

 Interlock function. Till now, signals connected are MEBT and DTL power supplies, MPS related, IS extraction timing and IS extraction HV control.

•Function test of RFQ RF power interface has been done electrically, but not connected.

•Till now, all signals connected have been tested one by one with ChipScope monitoring in the FPGA, including the feedback signals from the IS extraction timing and the IS extraction HV control.

 Interlock signal to the RFQ RF power is cancelled when either of the feedback signals is OK.

•Time consumption includes delays in the fibers/cables and delays in the boards.

Main delay is due to the length of optical fibers.

Time consumption

Delay Measurement of High Speed Serial Links : Diagram

	📓 Trigger Setup - DEV:1 MyDevice1 (XC6SLX100T) UNIT:0 MyILAO (ILA)												1
M	Match Unit				Function	Value			Radix	Counter		1	
atch	M0:TriggerPort0				==	==			XXXX_XXRX	Bin	disabled		1
	Add		eti ve		Triager Condi	ton Nama		Triagon	Condition Equation		Output Epoblo		ī
Trig	Add Active				Trigger Condit	M0				Disabled			
÷	Der											•	4
Cap	Type:	Window	-	1	Windows:	1	Depth: 40	96	-	Position:	2048		l
ture	Storage	Qualification	on:			All D	I Data						
	Sample Buffer is full												
(Wavefo	orm - DEV:1	MyDe	vice1 (X	(C6SLX100T) UNIT:0 MyIL/	A0 (ILA)						r و م	I
	Bus/S	Signal	х	0	-2008 -2003	-1998 -1993	-1988	-1983 -1	978 -1973	-1968 -1963	-1958 -1953	-1948	
	DataPor	t[61]	0	0								<u>^</u>	4
F	DataPor	t[62]	0	0									
	DataPor	t[63]	0	0									
F	DataPor	t[64]	0	0								-	
	DataPor	t[65]	0	0									
F	DataPor	t[66]	0	0									
	DataPor	t[67]	0	0								-	
4		•	• •	4) 4								•	Ĩ
۷	Waveform captured 2015-5-18 16:39:59 I: -1978 ↓ 0: -2001 ↓ △ (I=0): 23												

Delay Measurement of High Speed Serial Links : ~230ns (23 clock cycles, clock period : 10ns)

散裂中子源 China Spallation Neutron Source

Design and implementation of FPS Time consumption

Delay Measurement of main logic with heart-beat: ~180ns (150ns width check + 1clk register + backplane delay + IO delay)

Ŏ

Master Board

Design and implementation of FPS **Time consumption**

RF interlock input : ~0.6µs (Mainly fiber delay)

- X : Signal for test
- Y : Internal response of RFQ LLRF
- Z : Power output control of RFQ LLRF

Response time of RFQ LLRF from interlock to stop power : Diagram

DS0-X 3034A, MY53280101: Mon Mar 30 15:37:30 2015

Response time of RFQ LLRF from interlock to stop power : ~150ns (300ns – (delay of 30m fiber))

• Maximum time consumption :

Critical paths : from (2) to (12) and to (13)

散裂中子源 China Spallation Neutron Source

Page 6 6

- Critical paths :
 - $2 \rightarrow 4$: 20m fiber : delay 100ns;
 - (4)=>(5) : Board/1.5m cable : delay ~50ns;
 - (5)=>⑦ : 90m fiber/high speed serial link :
 - delay : 450ns + 230ns = 680ns;
 - ⑦=>⑧ : Hear beat check/IO/Backplane :
 delay : ~180ns;

- Critical paths :
 - $7 \Rightarrow 9$: Almost same as $7 \Rightarrow 8$: ~180ns;
 - (8)=>(11) : Almost same as (4)=>(5) : ~50ns;
 - (9=>10 : Almost same as (8)=>(11) : ~50ns;
 - (11)=>(13) : ~1.3 μ s (~220m fiber/board);

- Critical paths :
 - (10=>(12) : 600ns + 150ns = 750ns (~100m
 fiber ...)
 - (2)=> (12) (Interlock to RFQ power), total 1.8 μ s.
 - (2)=> (13) (Interlock to IS extraction timing), total 2.4 μ s.

• Critical paths :

Response time of power supplies to FPS is $[2.8, 3.4]\mu s.$

So, total response time (Interlock source, FPS, actuator) is [4.6, 5.2] μ s.

• Beam Loss Monitors :

Response time of Beam Loss Monitors are below $10 \mu s.$

So, total response time (Interlock source, FPS, actuator) is 11.8 µs.

Design and implementation of FPS Software development

fpsState.opi fpsHBeat.opi IOC : VME 5100/VxWorks Periodic readout and comparison. Stronger controller may be used later.

fpsBypass.opi

Design and implementation of FPS Software development

C CS-Studio			_ 								
🞬 FPS_Bypass.opi 🛛 🎽 FPS_State.opi											
FPS Main Card Bypass Mask Config											
Bypass Allowed /FPS/script/BypassNone.txt Coad Pattern Save Pattern											
Card 1 Card 2 Card 3 Card 4	Card 5 Card 6 Card 7 Ca	ard 8									
MASKO	MASK1	MASK2									
UnCheckAll	UnCheckAll	UnCheckAll	UnCheckAll								
CheckAll	CheckAll	CheckAll	CheckAll								
Ch0	Ch16	Ch32	Ch48								
Ch1	Ch17	Ch33	Ch49								
Ch2	Ch18	🕑 Ch34	Ch50								
Ch3	Ch19	Ch35	Ch51								
✓ Ch4	Ch20	Ch36	Ch52								
Ch5	Ch21	Ch37	Ch53								
✓ Ch6	Ch22	Ch38	Ch54								
✓ Ch7	Ch23	Ch39	Ch55								
Ch8	Ch24	Ch40	Ch56								
Ch9	Ch25	Ch41	✓ Ch57								
Chilo	Ch26	Ch42	✓ Ch58								
	Ch27	Ch43	Ch59								
	Ch28										
Chis	Ch29	Ch45									
Ch14	Ch31	Ch40	Ch63								
	Clist										

Design and implementation of FPS Software development

Design and implementation of FPS

Software development

Design and implementation of FPS

Software development

C CS-Studio														l	
🞽 FPS_Hear	tBeat.opi 🛛	🞽 FPS_B	ypass.opi												- 8
FPS Main Card Heart Beat															
Card 1	Card 2 Car	d 3 Card4	Card 5	Card 6 Ca	ard 7 Card	8 B									
Ch0	Chl	Ch2	Ch3	Ch4	Ch5	Ch6	Ch7	Ch8	Ch9	Ch10	Ch11	Ch12	Ch13	Ch14	Ch15
120	120	120	120	120	119	119	119	120	120	120	120	120	120	120	120
Ch16	Ch17	Ch18	Ch19	Ch20	Ch21	Ch22	Ch23	Ch24	Ch25	Ch26	Ch27	Ch28	Ch29	Ch30	Ch31
119	119	119	119	119	119	119	0	119	119	119	119	119	119	119	119
Ch32	Ch33	Ch34	Ch35	Ch36	Ch37	Ch38	Ch39	Ch40	Ch41	Ch42	Ch43	Ch44	Ch45	Ch46	Ch47
Bypass	! Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!
Ch48	Ch49	Ch50	Ch51	Ch52	Ch53	Ch54	Ch55	Ch56	Ch57	Ch58	Ch59	Ch60	Ch61	Ch62	Ch63
Bypass	! Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!	Bypass!

Next to do

- Whole function test for FPS in field will be done around October, 2015 during the installation of DTL1.
- Whole system of FPS will be settled and put into use around November, 2015.

Summary

- Machine protection requirements and design of the fast protection system are introduced.
- Till now, the system can fulfill the requirements after preliminary tests.
- Backup connections for FPS will be routed to the RCS building for possible fast protection connections in the future.

Summary

Part of the protection system has been settled, further test and implementation will start soon.

All suggestions are welcome! Thanks a lot!