

Global Trigger with Vertex Fit for low energy neutrino research

concept and preliminary study

<u>Guanghua Gong</u>, Hui Gong

Dept. of engineering Physics, Tsinghua University

International Conference on Accelerator & Large Experimental Physics Control Systems

- Important for particle physics, astrophysics and cosmology
- > Key points for neutrino experiment
 - Low background
 - underground, low radioactive materials
 - Large detection volume
 - 20kt LS for JUNO
 - High photon collection efficiency
 - High light yield and high transparent LS
 - Coverage, large quantity of HPE PMT

- ♦ Ø37m sphere vessel
- ◆ ~ 15000 20" PMT
- ◆ 50K dark noise (new MCP PMT)

- ♦ Ø37m sphere vessel
- ◆ ~ 15000 20" PMT
- ◆ 50K dark noise (new MCP PMT)

- ♦ Ø37m sphere vessel
- ◆ ~ 15000 20" PMT
- ◆ 50K dark noise (new MCP PMT)

- ♦ Ø37m sphere vessel
- ◆ ~ 15000 20" PMT
- ◆ 50K dark noise (new MCP PMT)

- ♦ Ø37m sphere vessel
- ◆ ~ 15000 20" PMT
- ◆ 50K dark noise (new MCP PMT)

- ♦ Ø37m sphere vessel
- ◆ ~ 15000 20" PMT
- ◆ 50K dark noise (new MCP PMT)

Basic numbers:

- ♦ Ø37m sphere vessel
- ◆ ~ 15000 20" PMT
- ◆ 50K dark noise (new MCP PMT)

Trigger decision window

Basic numbers:

- ♦ Ø37m sphere vessel
- ◆ ~ 15000 20" PMT
- ◆ 50K dark noise (new MCP PMT)

Trigger decision window

PMT Dark noise

- **Coincidence** Window: $\tau = 300 ns$
- **•** Total PMT Number: N = 14159

Vertex information

- Vertex information is useful
 - TOF difference can be corrected
 - reduce trigger window, Reduce dark noise coincidence -> lower E threshold
 - Flexible trigger scheme with vertex position
 - · adapt the multiplicity threshold to the distance
 - Veto noisy detector volume with high radioactivity background
- Difficult to get real-time vertex information in trigger system
 - "Charge weighted mean center" is complicate to implement in FPGA
 - binary hit information is not sufficient, charge information is needed
 - Dedicated algorithm to extract charge info. From 1Gsps ADC sample stream to be developed
 - Transmit and process of charge information is more costly

Vertex fit method

- \checkmark Assume the vertex at certain location
- ✓ Correct TOF for each PMT accordingly
- ✓ Small trigger window and high nHit threshold
- \checkmark go through all possible locations

Feasibility

- > precise Vertex position is not required
 - few meters resolution is good enough for trigger usage
 - 5m : 180 blocks for 20kt LS, 50ns trigger window
- > precise timestamp not needed
 - nHit information is time-aligned stream data updated in o(25ns)
 - arrival time of nHit = event time + TOF + electronics-latency
 - Electronics latency is compensated after installation
 - TOF can be corrected assuming the vertex position
 - All operations can be done in 25ns interval
 - Simply handled with system clock

> Parallel processing for each possible location

Advantages

- Compatible with conventional nHit trigger schemes
 - Set TOF correction to zero, set trigger window to 300ns
 - Keep nHit logic working in parallel, to guarantee IBD collection
- > extensible and flexible
 - More fit logic -> smaller block -> smaller trigger window -> less noise -> lower threshold
 - simple increase #VFL, not affect anything else
 - expandable even after data-taking
- simple
 - identical logic with TOF correct parameters for different block
 - VFL as simple "logic block", no need to be a physical board.
 - Multiple VFL can be implemented in a single FPGA
 - Data share inside chip, save input port

PMT hit time distribution

50ns trigger window

w/o fiducial volume cut 1m fiducial volume cut Trigger Rate/Hz Trigger Sources **Frigger Rate/Hz** 10⁶ 10⁶ **Trigger Sources** 10⁵ 10⁵ **PMT Dark Noise** PMT Dark Noise 10⁴ 10⁴ Signal Signal 10³ 10³ Signal E>0.1MeV Signal E>0.1MeV 10² 10² Signal E>0.2MeV Signal E>0.2MeV 10 E 10 1 10-1 10 10-2 10⁻² 10⁻³ 10-3 10-4 10-4 10⁻⁵ 10⁻⁵ 10-6 10-6 10-7 10-7 10-8 10-8 10-9, 50 100 250 0 150 200 300 10⁻⁹ 50 0 100 150 200 250 300 No. of PMT coincidence No. of PMT coincidence

with "nHit(50ns) > 100", <0.2Mev threshold is achievable

Hardware modules

> RMU

- 24 * 1.6Gbps input, 4.8Gbps output
- Simple processing
- Central Trigger receive and fan-out to 24 CUU

> Vertex Fit Logic/Unit

- 24 * 4.8Gbps input, 20Mbps block trigger output
- Simple processing

> CTU

- Multiple block trigger signals input
- Simple processing
- 20Mbps central trigger fan-out to 24 RMU
- FHI multi-sharing
 - To provide FHI (24 * 4.8Gbps) for all 180 VFL

Vertex Fit Logic

VFL Resource estimation

- > 288group x 8bit input
- each group delayed for 12 taps
- configurable taps from each group are summed up
- Comparator
- > Vertex5, LX220,
- Precision RTL Synthesis

Device Utilization for 5VLX220FF1760 ******************************* Used Avail Utilization Resource **10**S 11538 800 1442.25% **Global Buffers** 0.00% 32 $\mathbf{0}$ **Function Gener** 4891 138240 3.54% 3.54% **CLB Slices** 1223 34560 Dffs or Latches 139840 0.00% Block RAMs 0.00% 192 0

Ω

128

10 VFL in one FPGA is possible 180VFL= 18FPGA = 18/9 cards = 1 crate

DSP48Es

0.00%

Vertex Fit Unit

- > 24*4.8Gbps input
- Large logic resource (as much as possible)
- > Existing modules from HEP community
 - Already over-qualified for our needs

Production ready modules in CMS

• MP7

- XC7VX690T
- 72 Rx @ 13Gb
- 72 Tx @ 13Gb
- Ports 4-8 populated
 → 9-11 LVDS

CMS MP7

M. Hansen, CERN. magnus.hansen@cern.ch

E. Hazen -- xTCA WG

5/17

Base evaluate board for RMU/VFL

- ➤ XC7V585T
- > 4 FMC to evaluate different optical Rx Mezz
 - SFP, SFP+,QSFP,QSFP+,SNAP12 Rx/Tx module
- > Ethernet mezzanine for testing

To provide FHI (24 * 4.8Gbps) for all 180 VFL

= 180

- Enhanced global trigger system with vertex fitting is proposed
 - achieve lower threshold for low energy physics
 - dark rate is suppressed to reduce DAQ load
- > technical possibility been explored, no technical challenges foreseen
- > compatible with multiplicity trigger scheme
- > flexible, expandable

