The LANSCE FPGA Embedded Signal Processing Framework Jeff Hill LANSCE

Scope

- Replacing legacy RICE electronics
 - Mitigating risk
 - Component obsolescence, maintenance burden, Micro VAX II backplane, programmer portability ...
 - Obsolesce
 - Old designs multiplexing one type of ADC for all signal types

• Signals requiring

- Synchronization with the timing system
- Waveform capture
- Signal processing
- Systems
 - Current monitors, fast radiation-based loss monitors, beam position monitors
 - Embedded modular CPU hardware design, RTEMS RTOS, and EPICS software
 - Also utilized in RF control boards

Requirements – Timing

- Synchronization
 - With the hardware timing system
 - With data structures determining modal behaviors of LANSCE
 - This could be accomplished in hardware or without RTOS
 - But a software based solution based on a RTOS is the more flexible, costeffective approach

Requirements – Machine Protection

- Machine protection legacy analog systems
 - Are involved in essential functions, are highly redundant
 - Some of the components suffer from obsolescence
- We will not preclude creation of advanced digital-based machine protection prototypes
 - Modern electronics systems offer potential for increased integration
 - Initially redundant with our analog-based systems

Requirements – Subscription Updates

- Sufficient control system bandwidth
 - 10 surface plots of 625 by 48 points
 - For future operations with longer beam pulses
 - Accommodate 1,600 by 48 points
 - Updating at a rate of 4 Hz or better
 - On several workstations at once

Preferences – Overarching

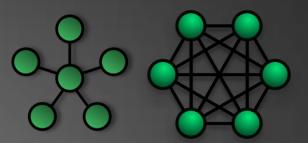
Framework of modular components

- Shared spares
- Shared chassis space
- Shared developer effort
- Shared developer expertise
- Industry standard modular interfaces
 - Long lifespan platforms
 - Multiple vendors for purchased components
 - Prefer industry standard development languages
- In a long lifespan facility
 - All electronics will eventually become obsolete
 - With a frame work, based on industry standard interfaces
 - There is an incremental upgrade path

Hardware Design – Electronics Trends

- Increased integration
 - Density
 - Is 3u the new 6u?
 - Mezzanine boards
 - Flexibility
 - Reduced cost due to economy-of-scale
 - Ethernet and processor ubiquitous
- Digital-based signal-processing algorithms
 - Design malleability
 - Component based design, collaborative or COTS
 - Instantiation of hardware from high level languages

Hardware Design – FMC Industry Standard


- FMC FPGA interfaced mezzanine cards
 - An industry standard, VITA-57
 - A standard tailor-made for a signal processing framework!
 - Economies of scale
 - Vendor's carrier and or mezzanine
 - Can be leveraged into more applications
 - Open competitive environment
 - Hopefully a healthy vendor ecosystem, and a long lifespan
 - Facilitates purchasing off the shelf for specialized FPGA applications
 - The modularity of FMC form factor
 - Enabling technology for integrating
 - ADC, digitizer, signal processing EPICS IOC all into one board
 - Simplified spares cabinet

Hardware Design – FMC Industry Standard

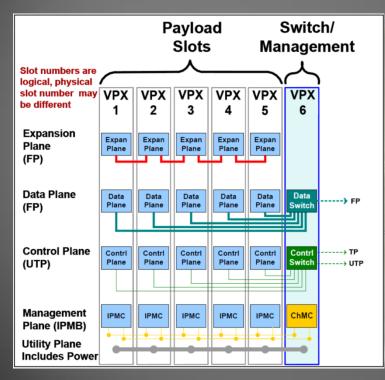
Hardware Design – Backplane Architecture

- Centrally switched versus meshed fabrics for packet networks
 - Considering design evolution inherent to Experimental Physics
 - Centrally-switched, increased likelihood slot agnostic
 - Meshed, increased likelihood slot personalities
 - In Experimental Physics perhaps the practical configuration is to prefer
 - Modules will function in any slot
 - Software doesn't need to learn the physical positions of other modules
 - Relax requirements to know a-prior per-slot throughput demands on the fabric
- Packet Switching Protocols
 - PCI Express
 - Is a network protocol
 - * But is transparent to root complex oriented PCI driver software
 - Board-to-board DMA communication
 - The ubiquitous choice in modern electronics
 - Our gateway to MRF timing and industrial IO via PMC/XMC/Compact PCI monarch
 - Gigabit Ethernet
 - Reduced cabling when there are many CPUs in the chassis

Hardware Design — Backplane Industry Standard

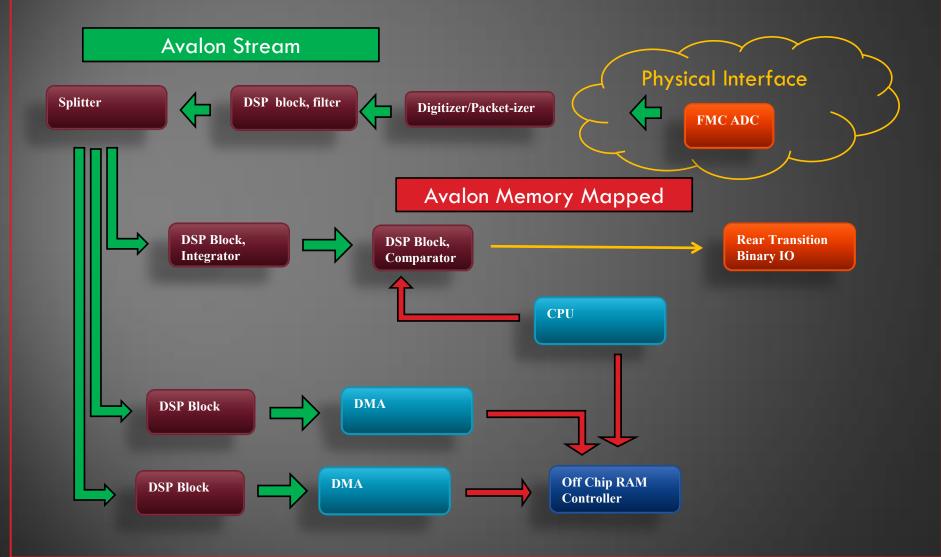
Technology		<i>CompactPCI</i> °				A	µTGA®	
	Std s Org	Generic IO	Activity	EVR Timing	FMC	Rear Transition IO	Packet Switching Backplane	
VME	VITA	+	+	+	rare	+	VXS, rare	
Compact PCI	PCMG				rare		Various, fragmented	
μτςα	PCMG	-		PMC*	+	*	+	
μΤϹΑ.4	PCMG			PMC*		+	+	
VPX	VITA		+	РМС	+	+	+	

rear transition IO, particularly PMC RTIO, hasn't been standardized in µTCA prior to dot 4
-- cost of proprietary VPX connectors encumbers its industry activity level but standardized PMC mezzanine rear transition IO diminishes this problem


Hardware Design – We selected VPX

• The positives of VPX

- High levels of vendor signal processing activity
- Well standardized high-density rear-transition IO
 - Standardized PMC rear-transition IO for MRF timing
- VPX 3U is a good match for our signal density requirements
- Modern VPX backplane protocols are appropriate
 - For a green-field signal processing framework
- The negatives of VPX
 - Proprietary impedance-matched high-density *module* connectors
 - Expensive compared to costs of commodity IO modules


Hardware Design – Open VPX Centrally Switched 3U Backplane

• Open VPX, VITA 65, BKP3-CEN06-15.2.2-2

Hardware Design – Component-Based Signal Processing

Hardware Design –

Component-Based Signal Processing

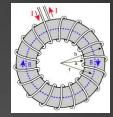
- Signal Processing Blocks Interconnected with Avalon Streams
 - We stay compatible with our RF group
 - An Altera workshop
- Signal Processing Blocks, implemented multiple ways
 - VHDL or Verilog
 - MATLAB/SIMULINK
 - IP Modules, off-the-shelf or open-source
- Softcore CPU, DMA, DDR Ram Controller, SPI Controller
 - Implemented with COTS IP

Hardware Design — Altera Build System

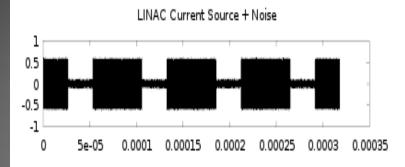
- Pin-assignment script detritus accumulates in the Altera project database
 - We need a clean rebuild
 - Only dependent on checkout from source code control
- Hardware builds can take a long time
 - We need an unattended build outside of the Altera Quartus GUI
 - Including automation of pin-assignment scripts for Altera IP

Support also for

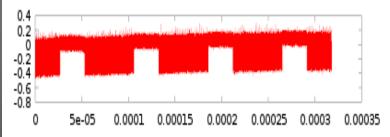
- Signal tap logic analyzer integration
- Partitioned builds


Signal Processing Algorithm — Kalman Filter

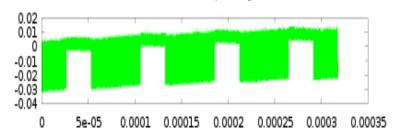
- Its possible to enhance the dynamic range of the system in the presence of noise
 - Oversample, average samples together
- The optimal way, use a Kalman filter
 - Average together

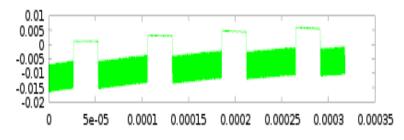

- Model predicted state of the system based on previous estimate of the system's state
- Together with a new measurement
- Using a mathematically optimal weighted average
- Forming a new estimate of the systems state
- A generalized approach suitable for use in a framework

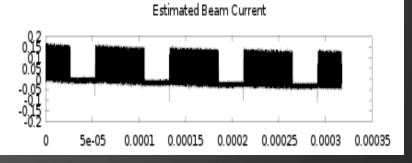
Signal Processing Algorithm — Kalman Filter



- For example, a current monitor toroid sensor
 - Two dynamical states in this type of system
 - The current flowing in the toroid sensor
 - The voltage across the capacitance seen by the toroid's primary
 - Sensor noise is often a challenge
- The typical goal of legacy analog processing is to produce a reasonable facsimile of beam current in the time domain
 - But often at the expense of lost high frequency information
 - Example, legacy trans-impedance amplifier
- Perhaps a modern approach, with a simplified analog front end
 - Only matching signal amplitude and impedance to the ADC
 - FPGA estimates the states of the system from its noisy outputs via Kalman filter
 - Time domain facsimile of beam current is simple linear multiple of these states
 - Challenges remain
 - Proper toroid sensor system characterization
 - Algorithm sensitive to transfer function pole placement


Beam Current Monitor Sensor State Estimator Simulation in MATLAB


Torroid Volt Measured (Model Out + Noise)



Estimated Cap Voltage

Estimated Coil Current

Software Design

- We have embedded the EPICS IOC within the FPGA Nios2 soft-core processor
 - Our perspective, direct connections from client to server are easier to diagnose on-call compared to system with proxy go-between gateway computers
 - This is very beneficial for instrumenting, debugging, and deploying the FPGA algorithm design
- Local enhancements to RTEMS support for Nios2 soft-core
 - Virtual RTEMS RTOS BSP
 - Implement once, deploy on multiple hardware designs
 - RF and diagnostics hardware designs use the same auto generated BSP
 - Automated system generation
 - First generate Altera BSP from Altera QSYS outputs
 - Extract configuration information
 - Base address, span, interrupt vectors, ...
 - Generate source files for consumption by RTEMS
 - All automated in the GNU-based RTEMS build
 - Drivers
 - Ethernet MAC, Scatter-gather DMA, SPI Controller
 - Prioritized interrupt dispatch
 - Essential for guaranteeing synchronization with timing hardware
 - Task-level network daemon GNU debugger stub
 - Essential for converging on quality with deployed system

Cost Versus Benefit

- Opposing limits of the spectrum of options, creating new system
 - We can buy turn-key integrated system off-the-shelf
 - We can assemble a system from parts, obtained from multiple vendors
- The system assembled from parts certainly cost more to develop
 - Hopefully we realize some benefits
 - Better protected from component/vendor obsolesce
 - Industry standard interfaces, healthy competitive ecosystem
 - Incremental upgrade avoids a clean slate upgrade
 - Better protected from design obsolesce
 - We maintain expertise in-house
 - Can evolve our systems to meet future requirements at LANSCE
 - Can reprogram our algorithms if we don't meet original design specifications
 - Nevertheless
 - Success requires leveraging the framework
 - Over multiple projects and facilities

Conclusions

- We are compelled to replace the RICE systems at LANSCE
- We have chosen the FMC and VPX industry standards
 - A solid vendor neutral technical basis for a green-field system
 - Appropriate for a framework
- We are implementing component-based signal processing
 - Appropriate for a framework
- We have embedded the EPICS IOC at the lowest level
 - Direct client-server communication is easier to diagnose on-call
 - Internals of our algorithms can be directly controlled and monitored
- This locally integrated system costs more to develop
 - Hopefully we are well protected against component and design obsolesce
 - Success requires leveraging the framework into multiple projects