Interface TELESCOPE MANAGER Management for **SKA Telescope** Manager

ICALEPCS 2015

Paul Swart (paul@ska.ac.za)

TM Context

• SKA

- Will revolutionise understanding of the universe
- Currently in Phase 1 (fraction of Phase 2)
- 2 telescopes in SKA1 Observatory

SKA1-Low (Australia)

SKA1-Mid (South Africa)

TM Context

• SKA1-Mid Telescope

TM Context

- Managing:
 - o astronomical observations,

- Managing:
 - o astronomical observations,
 - telescope sub-systems

- Managing:
 - o astronomical observations,
 - o telescope sub-systems to perform observations,

- Managing:
 - o astronomical observations,
 - o telescope sub-systems to perform observations,
 - o data

• Managing:

- o astronomical observations,
- o telescope sub-systems to perform observations,
- data to support users in achieving operational, maintenance & engineering goals.

SKA1-Mid TM Ext. Interfaces

- Interfaces with Elements:
 - Data exchange (estimated 2GBps throughput ¹):
 - Monitoring and Control
 - (CSP, SDP, Dish, MeerKAT Dish, SADT)
 - General
 - (CSP, SDP)
 - Network connectivity
 - (SADT)
 - Synchronisation and timing
 - (SADT)

¹ P.S. Swart et al, "SKA TM Design Report", T0000-0000-DR-001, Rev D, June 2015.

SKA1-Mid TM Ext. Interfaces

- Interfaces with SKA Observatory systems:
 - Physical (INFRA-SA)
 - Mechanical, Electrical, Cooling
 - Data exchange (INFRA-SA)
 - INFRA SA provides key status indicators that affects telescope operations (cooling & power)
 - Data exchange (ILS System)
 - TM sends failure related sensor data
 - User interface (scientists, observation planners, engineers, commissioners, maintainers, operators)
 - APIs: scheduling block construction, obs. scripts

SKA1-Mid TM Ext. Interfaces

- Interfaces with external systems:
 - Services:
 - Virtual Observatory Events
 - Astronomical catalogues
 - Satellite information
 - Flight information service
 - Earth orientation parameters
 - Ionospheric prediction
 - Custom experiment hardware

TM interface challenges

- TM interfaces with diverse & many systems.
 - Major source of requirements for TM,
 - Interface diversity causes complexity,
 - Risk: inconsistency TM requirements & interfaces.
- SKA project a collaboration of Element Consortia (geo. distributed institutions).
 Challenge of communication & coordination.
- Initial absence of central, comprehensive architectural representation for telescope.
 Ouncertainty of TM scope and boundaries.
- Various Human interfaces

Mitigations

- Telescope architecture impacts TM external Interfaces.
- SKA1-Mid functional architecture with allocations to Elements.
- TM external interface standardisation.
- Consistency between TM requirements and external interface definition.
- User interface development focus.

Observatory architecture impact on TM interfaces

- Local M&C functions allocated to Elements.
- Control hierarchy
 - Levels:
 - Human (infrequent, judgement based intervention),
 - TM (telescope, sub-array coordination),
 - Element LMC (frequent real-time autonomous).
- Conversely, upwards abstraction.
- Cause separation of concerns and reduce complexity.¹
- Enabled M&C interface standardisation.

¹ E. Fosse, C.L. Delp, "Systems Engineering Interfaces: A Model Based Approach", in Proceedings of 2013 IEEE Aerospace Conference, IPAC'14, Big Sky, MT, USA (2013); http://dx.doi.org/10.1109/AERO.2013.6497322

M&C Interface Standardisation

- Standardisation reduces M&C interaction diversity and produce guidelines for technical communication with Element Consortia.
- Standardisation helped set some TM M&C scope & boundaries.
- We produced a set of interface requirements for TM & Elements (to be refined).
- Aspects: general principles, required functionality, format and content of messages & communication infrastructure.
- LMC Guidelines document was distributed.

M&C Interface Standardisation: Framework

- Frameworks & communication protocols based on general interface requirements.
- TMC listed requirements for framework, led effort to identify, investigate & nominate candidate technologies (ACS, EPICS, TANGO).
- SKA Consortia representatives discussed candidates & criteria (Trieste March 2015).
- TANGO Control Systems selected as technology of choice for implementation of M&C interfaces between TM & Elements, recommended internal to Element (optional).

- Up to now:
 - $\circ~$ Telescope requirements allocated to TM.
 - Derived TM functional structure.
 - TM functions specified by TM requirements.
 - TM requirements refer to ext. Interfaces for interactions with Elements (some verifiable consistency).
 - External ICDs focussed on information flow.
 - SysML use case diagrams and swimlane activity diagrams describe TM behaviour in interactions via external interfaces.

- Going forward:
 - Modelling information exchange between TM & Elements as SysML object flows.
 - Allocate functions to TM and Elements,
 - Model functions as SysML activities,
 - Now object flow between TM & Elements can be shown.
 - By tracing each object flow to an allocated interface port and connector, behaviour (function) (specified by TM requirements) and structure (interfaces) are linked together, ensuring verifiable consistency.

TM User Interface Development Focus

- User interaction with TM is via user interface.
- Users & task analysis from TM requirements, SKA Concept of Operations & SKA Use cases.
- Project glossary is single definition of actors, roles, tasks.
- Represent scenario's and interaction workflows with SysML use case diagrams.
- Detail it out with textual descriptions & swimlane diagrams to describe dynamic behaviour.

Summary

- TM external interfaces: diverse & many.
- Handling resulting complexity by M&C separation of concerns and interface standardisation.
- SysML models integrate interface definition and requirements analysis, supports UI analysis & design.
- M&C standardisation and UI development are two focus areas of TM Consortium interface work.

Thank you

For more information, see: P.S. Swart, , S. Chauduri, G.M. le Roux, A. Marassi, R. Smareglia, S. Vircic, "Interface Management for the SKA Telescope Manager", MOD3006, ICALEPCS 2015.