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Sector #6Sector #1

EtherCAT Network

EtherCAT Network

Ethernet LAN

Fast Archiver
7 days circular buffer

(@ ~3 kHz)

Operator InterfaceFOFB Controller
PXI-8108

 . . .

~3 kHz loop update rate
48 sensor inputs
42 actuator outputs

I/O Nodes
cRIO-9144
● 100 kHz I/O sampling (16-bit)
● FPGA processing

➔ CIC decimator (factor 32)
➔ Controller Dynamics (up to order 24)

Timestamp +
48 BPM readings +
42 Corr. Setpoints +
42 Corr. Readings
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LNLS Fast Orbit Feedback OverviewLNLS Fast Orbit Feedback Overview

LNLS storage ring orbit stability: 
within 10% beam size without FOFB

Vibrations: < 2% beam size

Power supply ripple: 5% beam size

FOFB is essential for mitigating 
undulator (EPU) disturbances

Electron beam sizes
(1-sigma) at BPMs:
Horizontal: 870 μm – 1.30 mm 
Vertical:  58 μm – 86 μm 

10%

5%
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System Identification – Model StructureSystem Identification – Model Structure

FOFB Model
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System Identification – Model StructureSystem Identification – Model Structure

● Static Orbit Response Matrices
FOFB Model
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System Identification – Model StructureSystem Identification – Model Structure

FOFB Model
● Static Orbit Response Matrices

● Orbit Corrector Power Supply 
+ Magnet Impedance
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FOFB Model
● Static Orbit Response Matrices

● Orbit Corrector Power Supply + 
Magnet Impedance

● CIC Decimation Filter + 
Network Delay
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System Identification – Model StructureSystem Identification – Model Structure

FOFB Model
● Static Orbit Response Matrices

● Orbit Corrector Power Supply + 
Magnet Impedance

● CIC Decimation Filter + 
Network Delay

● Magnet Core + Vacuum 
Chamber

● BPM Electronics
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System Identification – ExperimentsSystem Identification – Experiments

● Pseudo Random Binary Sequence (PRBS)

● One corrector excited at a time

● 62-point PRBS sequence

● 750 Hz bandwidth (-3 dB)

● 9.2 μrad peak-to-peak excitation

● 42 input-output datasets for orbit 
correctors

● 48 input-output datasets for BPMs

● Input signal spectral lines should not 
align with output spurious lines
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System Identification – Black-Box ModelingSystem Identification – Black-Box Modeling

● Method: Auto Regressive Model with 
Exogenous Input (ARX)

● Time-domain average

● 160 sequences (62-sample long)

● 50% / 50% of sequences are used for 
estimation and validation

● Bandwidth of interest: 0 – 500 Hz

B(z)
1

A(z)+

n(k)

u(k) y(k)

● BPM + Magnet Core + Vacuum 
Chamber

➔ order 2 (4 parameters)
➔ 1-sample delay

● Orbit corrector Power Supply + 
CIC Decimator + Network Delay

➔ order 8 (16 parameters)
➔ 3-sample delay
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System Identification – ResultsSystem Identification – Results

- - - CIC + Network Delay only

Data model validation

Residual analysis: no 
correlation between 
residues and inputs

Orbit 
Correctors

BPMs

> 97% > 91%

Fit%=100 (1−
‖ymeasured− ymodel‖2

‖ymeasured− ymeasured‖2
)
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Model UncertaintyModel Uncertainty

- - - CIC + Network Delay only

Input multiplicative uncertainty:

Norm-bounded uncertainty:

Weighting transfer function 
(order 1):

● 4 classes for orbit correctors

● 5 classes for BPMs

Guncertain( z)=Gnominal (z )(1+W (z)Δ (z ))

‖H (Δ)‖∞<1

W (z )
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Control Design – The ApproachControl Design – The Approach

Signal-based Control
Detailed characterization of:
● Disturbances
● Noise
● Performance Goals

Mixed H2/H∞ Optimal Control
● H2 to analyze and optimize performance
● H∞ to analyze and optimize nominal worst-case

Robust Control Analysis
● Uncertainty Modeling
● Worst-case analysis

FOFB Control FOFB Control 
DesignDesign
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Control Design – Augmented PlantControl Design – Augmented Plant
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Control Design – Augmented PlantControl Design – Augmented Plant
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Actuators 
Inputs

Actual Process 
Variables

Measured Process 
Variables

Sensors
Plant
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Control Design – WeightsControl Design – Weights
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Control DesignControl Design
Performance and Robustness MetricsPerformance and Robustness Metrics
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Control DesignControl Design
Performance and Robustness MetricsPerformance and Robustness Metrics
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EPU gap and phase
disturbances

Power Supplies 
Ripple

Beamlines 
Sensitivy 
Bandwidth

BPMs noise floor
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Control DesignControl Design
Performance MetricsPerformance Metrics
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‖T d ,n→z‖2
Quadratic cost (2-norm) between 
normalized input d + input n and output z
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Control DesignControl Design
Robustness MetricsRobustness Metrics
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Worst-case multivariable 
gain on sensitivity function
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Control Design – Simulation ResultsControl Design – Simulation Results
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‖S y‖∞
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P
l
a
n
e

BW
Hz K μ

H 25 0.0855 0.7467 19 4e-1

H 50 0.1271 0.7294 10 3e-1

H 10 0.1710 0.7293 10 4e-1

V 25 0.7837 0.9746 111 1e-2

V 50 1.160 0.8585 62 5e-3

V 100 1.466 0.8480 62 8e-3

Control Design – Simulation ResultsControl Design – Simulation Results

‖T d ,n→z‖2 ‖S y‖∞

Vertical Plane

Horizontal Plane

Optimal Controllers



26

Conclusion – LNLS FOFBConclusion – LNLS FOFB

● LNLS FOFB performance is fundamentally limited by an overall latency of 
~1.5 ms
– Rule of thumb: 0 dB crossover frequency on disturbance rejection = 1/(20 * closed-loop 

delay) → ~30 Hz at maximum

● Uncertainty on sensor and actuator transfer functions are relevant only above 
maximum closed-loop bandwidth (30 Hz) so they cause little harm in practice

● Uncertainty on response matrix does not degrade closed-loop robustness

● Tikhonov regularization “buys” robustness with low degradation of performance

● Simulation results still to be confirmed with experimental data
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Conclusion – GeneralConclusion – General

● Signal-based control approach makes the loop optimization 
straight forward

● Effort should be put on modeling not only plant and sensor, but 
also disturbance, noise and performance goals

● Transition from trial and error tuning of FOFB systems to 
optimization-based techniques allows reaching performance and 
robustness limits



Thank youThank you

daniel.tavares@lnls.br
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Control Design – Simulation ResultsControl Design – Simulation Results
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