

Elettra Sincrotrone Trieste

Automatic FEL Optimization at FERMI

G. Gaio

www.elettra.eu

Machine layout (seeded Free Electron Laser)

FEL-1 FEL-2 basic schemas

ICALEPCS2015, Melbourne, Australia

Giulio Gaio – 19 Oct 2015 - MOC3O03 4

Short / long term drifts

ICALEPCS2015, Melbourne, Australia

Short / long term drifts

FEL performance decay causes:

- systematic causes: FEL wavelength change (scans)
 - Improve machine physics models
 - Add feedforward / feedback systems
- **unpredictable causes**: thermal drifts (0.01° C), faults, mishandling, degradation of components....
 - Improve thermal stability
 - Improve diagnostics

Stochastic optimization

Pros

- simple
- model-less

Cons

- doesn't assure global optimum
- convergence scales badly with the number of inputs
- no stop rule
- may perturb the system

Possible algorithms:

- stochastic approximation
- simultaneous perturbation
- random search
- simulated annealing
- evolutionary algorithms (genetic)
- •

Optimization of electron and laser beam trajectories

Algorithm description

- Collect N trajectories and the corresponding objective function that has to be maximized (ex: FEL output power...)
- Sort the trajectories according to the objective function value in descending order
- Calculate a "golden" trajectory by averaging the first M trajectories (M usually 10% of N)
- Calculate the "mean" trajectory by averaging the remaining N-M-P trajectories where P is the number of the worst trajectories (P usually 10% of N)
- Sum the difference between the golden and the mean trajectory to the trajectory feedback set-point
- Go back to the first step

 $x^{(1,1)}$ $X^{(1,n)} F_{1}(max)$ Golden Trajectory х^(M,1).....Х^(M,n) Fм $x^{(M+1,1)}$ $X^{(M+1,n)} F_{M+1}$ $x^{(M+2,1)}$ $X^{(M+2,n)} F_{M+2}$ Mean Trajectory $X^{(N-P,1)}$ $X^{(N-P,n)} F_{N-P}$ $x^{(N-P+1,1)}$ $X^{(N-P+1,n)}$ F_{N-P+1} Worst Trajectories $\mathbf{X}^{(N,1)}$ $\mathbf{X}^{(N,n)}$ $\mathbf{F}_{N}(\mathbf{MIN})$

Optimization tool: operating modes

Active mode: trajectory feedback performs on each beam position monitor a 2D spiral scan, desynchronized from the others.
PROS:

- increments correlation between feedback setpoints and objective function (ex. *FEL intensity*)
- CONS:
 - perturbs the FEL output

Passive mode: take advantage of the beam noise to "explore" the system inputs
• PROS:

- doesn't perturb the FEL output during optimization procedure
- CONS:
 - noise level could be insufficient to get a good correlation with FEL intensity signal

Continuous/Timed mode:

run optimization continuously or over a fixed period of time. In **Timed mode:** the spiral decreases its amplitude in time *(simulated annealing).*

Optimization tool: seed laser alignment (2 CCDs, 4 variables)

- Moved three out of four feedback set-points which keeps the seed laser transversally aligned with electron bunch
- Drop of FEL intensity from 50 to almost 0 μJ
- Automatic optimization restores the original beam positions on the CCDs and the FEL output power

Optimization of the seed laser trajectory

Optimization tool: seed laser alignment (real case)

ICALEPCS2015, Melbourne, Australia

Giulio Gaio – 19 Oct 2015 - **MOC3O03**

Optimization tool: FEL-2 alignment (15 beam position monitors, 30 variables)

Photodiode

25

20

15

10

Ŧ

-1Time (min) Time window (min): 6 -Acoustic alarm for signal below: 20 FEL-2 PADRES photodiode (µ) Send to E-log Save Data

Optimization of the intra-undulator trajectory

- **Objective function:** FEL-2 intensity measured
 - by a photodiode and a CCD
- Passive mode
- FEL signal from **20 µJ** to **30 µJ** (5.4 nm)

Optimization triggering / Feedback monitoring

feedback_correlator

**** TARGET ****

Correlations with srv-padres-srf:20000/pfe_f01/diagnostics/iom_pfe_f01.01: GetI

*** FEEDBACKS SENSORS ***

sl/diagnostics/ccd_sl.07: GetVerPos 0.297486 sl/diagnostics/ccd_sl.05: GetVerPos 0.223745

bc01/diagnostics/cblm_pyro_bc01.01: GetBunchLength 0.189015 sl/diagnostics/ccd_sl.04: GetHorPos 0.177866 l03/diagnostics/rtbpm_l03.01: GetHorPos 0.167193 l02/diagnostics/rtbpm_l02.04: GetHorPos 0.161606 l02/diagnostics/rtbpm_l02.03: GetHorPos 0.158425 sfel01/diagnostics/cbpm_sfel01.01: GetHorPos 0.157985 sfel01/diagnostics/rtbpm_sfel01.01: GetHorPos 0.157157 l03/diagnostics/rtbpm_l03.02: GetVerPos 0.144015

*** FEEDBACKS ACTUATORS ***

iufel01/power_supply/pscv_iufel01.04: GetCurrent 0.413885 sl/piezo/tiptilt_sl.02: GetVoltageVer 0.411332 kg05/mod/llrf_kg05.01: Getcav_amp_set 0.367692 kg03/mod/llrf_kg03.01: Getcav_amp_set 0.366240 sfel01/power_supply/pscv_sfel01.04: GetCurrent 0.310594 sfel01/power_supply/pscv_sfel01.06: GetCurrent 0.304641 kg04/mod/llrf_kg04.01: Getcav_phase_set 0.293048 iufel01/power_supply/pscv_iufel01.05: GetCurrent 0.285349 l03/power_supply/pscv_l03.01: GetCurrent 0.282975 sl/piezo/tiptilt_sl.03: GetVoltageHor 0.250698

- Correlates (Pearson) continuously shot to shot data of sensors and actuators included in the feedbacks (214 variables) with a objective function (ex. FEL power)
- Sorts actuators/sensor in descending order according the correlation value
- Identifies which actuators/sensors to use for the optimization

Conclusions

Achievements

- Optimization algorithms used routinely during machine operations
 - seed laser trajectory
 - electron beam trajectory
- Found method (by correlation analysis) to identify the correct optimization procedure

To do list

- To extend the optimization procedure to other subsystem (temporal alignment between seed laser and electron beam)
- Completely automatic optimization (replace human intervention)
 - noise detection -> optimization procedure

Thank you!

ICALEPCS2015, Melbourne, Australia

Giulio Gaio – 19 Oct 2015 - **MOC3O03**