

LCLS-II Controls & Safety Systems Status

Debbie Rogind for Hamid Shoaee SLAC National Accelerator Laboratory

Slides Courtesy of: Hamid Shoaee, Paul Emma, John Galayda, Larry Ruckman, Matt Weaver Andrew Young, Ryan Herbst

Introduction

- What will LCLS-II Look Like?
- Controls & Safety Systems TUC3007
 - What's Mature
 - What's New Development
- Summary

LCLS: World's First Hard X-Ray FEL

- Delivering science since 2009
- A billion times brighter than previous sources
- Study of ultra-fast and ultra-small phenomena
- Can capture images of atoms & molecules in motion
- Delivers to ~600
 scientists/year
 (1300 user visits)
- ~25% of proposals are allotted time

What's Next? Next Generation LCLS-II.....

LCLS-II Layout - Project scope

- LCLS-II adds a 4 GeV SC linac to the first kilometer of the SLAC linac tunnel.
 - The copper linac in that region will be removed
- The new beam will run CW at up to 1 MHz
 - The LCLS-1 linac is not altered, retains performance
- The new beam can be directed at either of two new undulators
 - The LCLS-1 beam can be directed to the new Hard X-ray Undulator (HorizGapVertPolUnd)
 ICALEPCS 2015, October 17-24, 2015

6

Repurpose Existing Experimental Stations

Controls System High Level Schedule

Advancing Controls for LCLS-II

Mature Subsystems: PPS, BCS*, Drive Laser, Vacuum, Temperature, Magnet Power Supply, Undulator Motion, Fast Wire Scanner, Profile Monitors, Network & Computing, Physics High Level Applications, **Operational Software**

* Except for fast shutoff electronics

Mature Controls/Operations Software

- Share mature EPICS subsystems code base and dev. environment
- LCLS Operational software will be shared with LCLS-II for dual use, but clearly identified for each machine (FACET & other facilities already share – machine agnostic)
- Physics High Level software (mostly MATLAB based) for beam diagnostics and machine tuning mostly from LCLS
- New EPICS V4 services for high level apps (Directory, Name, RDB, Model Manager, Archive Appliance,..)
- EPICS V3/V4 Gateway Desired
- New model manager based on MATLAB and MAD
- LCLS is evaluating next generation EDM display manager alternatives
- Archive Appliance (new HTML5 viewer) for millions of PVs

LCLS-II Status

New Controls for LCLS-II

High Rep Rate Subsystems Timing, BSA, MPS, Diagnostics (BPM, BLEN, BCM), BCS fast beam shut-off, Beam Based Feedback

Brand New Subsystems SCRF, ODH, Cryo I/Fs

New Controls for LCLS-II

- MPS & Timing systems most challenging
 - Must handle different beam rates from low-rate to full CW 1Mhz, complex burst patterns at each rate, interleaved energies, different destinations for each pulse
 - Shared beamlines must be backward compatible with LCLS
 - Fault to beam shutoff <100uS for fast faults
 - LCLS & LCLS-II controls interoperability necessary due to simultaneous operation and beam lines fed from either accelerator
- Full beam rate Diagnostic Devices Faster digitizers

Common Platform for High Rep Rate Systems

Common Platform & Architecture

- Standard ADC + FPGA Electronics
- 4-10 channels of 120-250 MHz >11 effective bit ADC's.
- FPGA containing common platform FW plus applications for daughter cards
- Memory to buffer several million consecutive readings.
- Computer interface for setup/read-back.
- Prototyping in progress with ATCA (not mTCA) and NADs
- As appropriate for application and convenient for prototyper
- ATCA in-house expertise; leverage to other projects
- LLRF NAD expertise and experience at partner labs
- ATCA time to market unhindered by an emerging standard
- ATCA relieves certain real estate issues (e.g. for BPM application)
- Final packaging will be determined by performance, schedule, and implementation cost

Platform Packaging

Timing Receiver: Common Platform Design

Common Platform Carrier Card

Interface to the common platform is the embedded timing receiver firmware and software to execute common acquisition functions.

Stripline and Cold Button BPM: Common Platform Design

MPS Input Processing: Common Platform

MPS Chassis Example

8 BPMs in one ATCA crate	1 st RF SXR	RFBSX34	2 nd RF SXR	RFBSX35		
BPM Carrier 4 – Slot 6	AMC 1	0000	AMC 0	0000	RS232	Example deployment with 8
	3 rd RF SXR	RFBSX36	4 th RF SXR	RFBSX37		BPMs and 6 MPS beam loss
BPM Carrier 3 – Slot 5	AMC 1	0000	AMC 0	0000	IPMI	monitors
RDM Carrier 2 - Slot 4	5 th RF SXR	RFBSX38	6 th RF SXR	RFBSX39		
BPIN Carrier 2 – Slot 4	AMC 1	0000	AMC 0	0000	el 16	
BPM Carrier 1 – Slot 3	7 th RF SXR	RFBSX40	8 th RF SXR	RFBSX41	Shelf Manager	
	AMC 1	0000	AMC 0	0000		
MPS Link Node – Slot 2	MPS	Generic ADC/DAC	MPS G	Generic ADC/DAC		MPS link node card
						with BLMs
10G Switch – Slot 1	SPARE	F1	25			
		Fast Feedback	232 Et	hernet Managerment		
	RFBPM	BLD		aremeendingerment		
					-	
						· · · · · · · · · · · · · · · · · · ·
)	10	
AS	SIS 7					
Po	ossibl	e to suppor	t 10 B	PMs		
plu	us MF	PS link node				
•					A	·····································
						57

Summary

- The requirements for LCLS-II controls are well understood
- Detailed cost estimates & schedules have been developed
- Extend successful EPICS Controls for LCLS to LCLS-II
- Preliminary design reviews have been held for all mature controls subsystems – ready for final design
- High rep rate systems progressing well in preliminary design stage, with FDR by the end of 2016
- A common platform architecture is under development
- Teams at SLAC and partner labs have been identified with the capability and capacity to develop brand new systems

Acknowledgements

Backup Slides

LCLS-II Layout in SLAC Linac Tunnel

(only approximately to scale)

Two Refrigeration Systems in the Cryoplant

 A second cryoplant was adopted after the CD3b review to mitigate the risk of the required heat load of cryosystem (2) 4.5K and (2) 2K cold boxes – copy of jlab design

Project Collaboration: SLAC couldn't do this without...

‡ Fermilab	 50% of cryomodules: 1.3 GHz Cryomodules: 3.9 GHz Cryomodule engineering/design Helium distribution Processing for high Q (FNAL-invented gas doping)
Jefferson Lab	 50% of cryomodules: 1.3 GHz Cryoplant selection/design Processing for high Q
BERKELEY LAB	 Undulators e⁻ gun & associated injector systems
Argonne	 Undulator Vacuum Chamber Also supports FNAL w/ SCRF cleaning facility Undulator: vertical polarization
	 R&D planning, prototype support processing for high-Q (high Q gas doping) e⁻ gun option

Key Performance Parameters

Performance Measure	Threshold	Objective
Variable gap undulators	2 (soft and hard x-ray)	2 (soft and hard x-ray)
Superconducting linac-based FEL system		
Superconducting linac electron beam energy	3.5 GeV	≥4 GeV
Electron bunch repetition rate	93 kHz	929 kHz
Superconducting linac charge per bunch	0.02 nC	0.1 nC
Photon beam energy range	250–3,800 eV	200–5,000 eV
High repetition rate capable end stations	≥ 1	≥2
FEL photon quantity (10 ⁻³ BW)	5x10 ⁸ (10x spontaneous @2,500 eV)	> 10 ¹¹ @ 3,800 eV
Normal conducting linac-based system		
Normal conducting linac electron beam energy	13.6 GeV	15 GeV
Electron bunch repetition rate	120 Hz	120 Hz
Normal conducting linac charge per bunch	0.1 nC	0.25 nC
Photon beam energy range	1,000–15,000 eV	1,000–25,000 eV
Low repetition rate capable end stations	≥2	≥ 3
FEL photon quantity (10 ⁻³ BW ^a)	10 ¹⁰ (lasing @ 15,000 eV)	> 10 ¹² @ 15,000 eV

^[1] Fractional bandwidth. The specified KPPs are the number of photons with an energy within 0.1% of the specified central value.

Advancing Controls to Meet Future Needs

- Extend the successful LCLS EPICS Controls to LCLS-II
- Some systems have substantial new requirements due to higher beam power and high rep rate
 - SC LLRF, Timing System, Diagnostics (BPM, BLEN, BCM), Beam-Based Feedback
 - Faster beam abort mechanisms for MPS, BCS
 - New radiation containment system