
KaraboGUI: The Multi-Purpose Graphical Front-End for
the Karabo Framework
Burkhard Heisen, Martin Teichmann, Kerstin Weger, John Wiggins
European XFEL GmbH, Hamburg, Germany

Projects are containers persisting everything needed for a specific task:
● A list of all devices that need to run, and their desired configuration
● The scenes graphically representing the task
● Specific configurations to be applied to devices
● Macros to program repetitive or sequential tasks
● A list of device parameters to be monitored for the task

● The logging widget logs all messages broadcast in Karabo.
● An IPython based console allows to use the macro language

interactively.

The live navigation shows all running
devices, their classes and the device
server they are running on. Users can
instantiate and shutdown devices.

Users can design scenes, graphical
representations of the running system.
Properties are dragged from the device’s
configuration to be shown in the scene.

With the device configurator the user can configure any
running device, as well as pre-configure devices to be
run. The configuration panel is autogenerated from the
device parameters already known before instantiation.

Karabo is the new integrated control,
data acquisition and processing
framework developed for the photon
beamlines at the European XFEL.

There is one graphical user interface for
everything one can do with Karabo. This includes
running and configuring devices, designing
graphical interfaces, writing and executing macros.

Karabo devices can communicate high-bandwidth data via direct links.
These pipelines can be designed in the GUI as well.

Detector data is fanned out into
the Processor group of devices
(fat border) and fanned back into
the Store device

Samples of data are sent to a
Viewer (dashed lines)

Data pipelines

Macros can be edited directly in the GUI, but then run on a
dedicated macro server. They are class-based and are a special
form of devices.
They are to be used for specific tasks only, generic tasks should
be implemented as devices.

from karabo import *

class Scan(Macro):
 start = Float(description=”Start position”)
 stop = Float(description=”End position”)
 steps = Int()

 @Slot()
 def run(self):
 ”””Start the scan”””
 with getDevice(”motor”) as m:

m.targetPosition = self.start
 m.move()

Macros

www.xfel.eu

drag properties and
slots to scene

drag devices to scene
for workflows

Different widgets
can be selected for
a property

A Karabo installations consists of many software
devices, which may control hardware directly or
indirectly via other devices, process or store
data. The devices communicate via a broker.

A data visualization scene

The GUI allows visualization of slow control data
and is capable to online monitor images provided
by large 2D detectors during acquisition and
processing steps, such as calibration and analysis.

Data can be retrieved from
storage by dragging to the past.

