
Use of Tornado in KAT-7 and MeerKAT
Charles de Villiers (charles@ska.ac.za),

Bulelani Xaia (bxaia@ska.ac.za)

SKA South Africa

KAROO ARRAY TELESCOPE CONTROL PROTOCOL (KATCP)1,2

• Control and Monitoring (CAM) software for the Karoo Array Telescopes

• Simple textbased protocol for control and monitoring

• Used for KAT7 (prototype) now for MeerKAT

• Provides abstractions for a networked system Message, Server, Client, Sensor

• Original implementation used Python threading for concurrency

TORNADO3

• Concurrency framework and Web server written in Python4

• Highly scalable

• Supports nonblocking I/O

• Provides scheduling on top of coroutines

• Caller must ‘yield’ the Future if it needs the result

• Scheduler can proceed with other, nonblocking tasks

Background image:

NGC-101 (Pinwheel Galaxy)

Credit: Wikipedia

REFERENCES
1. KATCP documentation:
 https://pythonhosted.org/katcp/
2. KATCP GitHub repository:
 https://github.com/skasa/katcppython
3. Tornado documentation:
 http://tornado.readthedocs.org/en/stable/
4. Python website:
 https://www.python.org/

SUMMARY
• Tornado is starting to deliver on its promise of effi cient multitasking

• The Tornado Web server and testing framework are also proving useful

• Application code simplifi cations are being achieved by the removal of complex locking logic

• Simpler code means better, more reliable code

• The effort of conversion has been considerable, but we believe it has been worthwhile

THREADS vs COROUTINES

Threads
• Directly supported by OS and Python

• Familiar to most developers

• Allow responsiveness in an I/O bound system

• Lighter than processes, but still ‘heavyweight’ use too many resources

• Nondeterministic behaviour depends on system scheduler

• Determinism demands complex code and careful design

• Hard to use correctly, hard to debug, hard to maintain

Coroutines
• Execute within a single thread (mostly)

• Cooperative multitasking

• Developer determines points where context may switch

• Simpler code, easier maintenance

• Support large numbers of persistent connections

• ‘Lightweight’ (non-OS) context switch

• Allow independent tasks to proceed without blocking

• Generally return a Future placeholder for a pending result

ADAPTING CAM AND KATCP TO TORNADO
• KATCP and CAM core classes have been rewritten to take

 advantage of Tornado coroutines

• But there is much legacy code that expects synchronous responses

• Compatibility layer (using decorators) takes care of the differences

• Clients can select a synchronous or asynchronous interface

• CAM software currently includes both types of client

CAM SOFTWARE LAYERS

