
Advanced Photon Source • 9700 S. Cass Ave. • Argonne, IL 60439 USA • www.aps.anl.gov • www.anl.gov

S. Veseli, Argonne National Laboratory, Argonne, IL 60439, USA

PvaPy: Python API for EPICS PV Access

Overview

The PvaPy package provides a Python API for EPICS PV
Access. It wraps the EPICS4 C++ libraries using the
Boost.Python framework that enables interoperability
between C++ and Python. Some of the PvaPy features
include:

•  Standard EPICS build, enhanced with automated
configuration

•  Support for all PV data types (scalars, structures,
unions)

•  Support for setting and retrieving channel values
•  Monitoring support
•  RPC Client/Service support
•  Standard Python module documentation

The PvaPy source code is hosted on GitHub at
https://github.com/epics-base/pvaPy and is
bundled as part of the EPICS4 releases at http://
sourceforge.net/projects/epics-pvdata/files

PvaPy Objects

PvObject class represents a generic PV structure. It is
initialized with a dictionary of introspection data that
describes the underlying structure in terms of field
names (keys) and their types (values). All PV data
types can be represented using standard Python types
and data structures (dictionaries, lists, tuples).

Example 2: Setting a PvObject’s value from a
Python dictionary.

pv.set({
 'sArray':[
 {'i':1,'d':1.1},
 {'i':2,'d':2.2}
]
})

Example 3: Setting a specified structure array field.

pv.setStructureArray(
 'sArray',
 [
 {'i':1,'d':1.1},
 {'i':2,'d':2.2}
]
)

Example 4: Initializing the “doubleArray” Channel
object and setting its PV value from a Python list.

c = Channel('doubleArray')
c.put([1.0,2.0,3.0])

Example 5: Monitoring Channels.

def sum(pv):
 s = 0
 for d in pv.get()['value']:
 s += d
 print s
c.subscribe('sum',sum)
c.startMonitor()

Future Work

Some features planned for the future:
•  Complete support for all Normative Types
•  Support for “putGet()” and “getPut()” operations
•  Support for Python 3
•  Support for NumPy arrays
•  Channel monitor enhancements
•  Test suite development
•  PVA Server implementation

Example 6: A simple RPC service returning the sum
of two numbers from the client’s request.

def sum(pvRequest):
 a = pvRequest.getInt('a')
 b = pvRequest.getInt('b')
 return PvInt(a+b)
srv = RpcServer()
srv.registerService('sum',sum)
srv.listen()

Example 7: An RPC client for the “sum” service.

c = RpcClient('sum')
request = PvObject({'a':INT,'b':INT})
request.set({'a':1,'b':2})
sum = c.invoke(request)

Example 1: Initializing a PvObject from a structure
array and a restricted union.

pv = PvObject({
 'sArray':[{'i':INT,'d':DOUBLE}],
 'u':({'f':FLOAT,'s':STRING},)
})

Figure 1: Documentation generated by Sphinx for the
pvaccess PvaPy Python module.

Actual field values for PvObject instances can be set
using a dictionary keyed on the field names. The
corresponding “get()” method returns a dictionary of
all the the PvObject’s field values.

An alternative way of manipulating and accessing a
PvObject’s fields is to use setters and getters that
correspond to different field types.

Channel Class

The Channel class provides the Python interface for
communicating with PV Access channels, as well as for
their monitoring. In addition to PV Access, this class also
supports Channel Access (the EPICS Version 3 protocol).

Channel’s “get()” method returns a PvObject representing
the current value for the given process variable. The
“put()” method accepts either a PvObject or a standard
Python data type as input for setting the process variable.

The monitoring functionality allows users to subscribe
to PV value changes and process them with a Python
function that takes a PvObject as an argument and has
no return value.

RPC Server and Client

The RpcServer class is used for hosting one or more
PVA Remote Procedure Call (RPC) services. Users define
an RPC processing function and register it with an
RpcServer instance. The RPC processing function takes
a client’s request PvObject as input, and returns a
PvObject containing the processed result.

RpcClient is a client class for PVA RPC services. Users
initialize an RpcClient object giving the service’s
channel name, prepare a PV request object, and then
invoke the service.

