
Solving the synchronization problem
in multi-core embedded real-time systems

F. Hoguin, S. Deghaye, CERN, Geneva, Switzerland

Abstract
Multi-core CPUs have become the standard in embedded real-time systems. In such systems, where several tasks run simultaneously, developers can no longer

rely on high priority tasks blocking low priority tasks. In typical control systems, low priority tasks are dedicated to receiving settings from the control room,

and high priority real-time tasks, triggered by external events, control the underlying hardware based on these settings. Settings' correctness is of paramount im-

portance and they must be modified atomically from a real-time task’s point of view. This is not feasible in multi-core environments using classic double-buffer

approaches, mainly because real-time tasks can overlap, preventing buffer swaps. Other common synchronization solutions involving locking critical sections

introduce unpredictable jitter on real-time tasks, which is not acceptable in CERN's control system. We present a lock-free, wait-free solution to this problem

based on a triple buffer, guaranteeing atomicity no matter the number of concurrent tasks. The only drawback is potential synchronization delay on contention.

This solution has been implemented and tested in CERN's real-time C++ framework (FESA).

From a two-buffer to a three-buffer solution
The two-buffer approach, while suitable for single-core real-time systems, does not work on multi-core systems where, at any time, any number of real-time

tasks (readers) can be reading settings values from the active buffer. We use a third buffer to ensure settings values’ correctness while providing a strong real-

time guarantee. Two real-time buffers, isolated from the non-real-time part, are updated alternatively with new setting values coming from the reference buffer.

This work is orchestrated by the Buffer Synchronizer that ensures a real-time buffer is free of readers before updating it. Atomic operations available on all

modern CPUs spare the use of locking mechanisms in the real-time part, ensuring a constant time between an event and the execution of the corresponding

task.

Abandoned solutions
Before developing this three-buffer solution, we analyzed different possibilities which were eventually discarded be-

cause of the impossibility to make them real-time compliant.

 Snapshot of the setting values: every real-time task uses its private snapshot. Not real-time compliant because

memory allocation is needed, and the jitter depends on the size of the setting values.

 Reader-writer lock mechanism: real-time tasks get a reader lock on the setting values. Buffer swap is done when the

writer lock is obtained. Not real-time compliant because real-time tasks would be blocked when copying new setting

values.

Buffer states and transitions
The real-time buffers can be in one of the following four states:

• Current: the buffer can safely be accessed and contains the current settings.

• Obsolete: the buffer can safely be accessed and contains old settings.

• Modifiable: the buffer is not in use and cannot be accessed. It is waiting for an update of setting values.

• Updating: new setting values are being copied in the buffer.

Buffers A and B are always in different but related states.

At start-up, the content of the reference buffer is copied to both

real-time buffers A and B, and buffer A is in Current state

while buffer B is in Modifiable state. Whenever the reference

buffer is modified and the modification operation committed, a

synchronization is triggered (“Sync triggered” transition). Since buffer B is in the Modifiable state, set-

ting values are copied by the buffer synchronizer from the reference buffer to buffer B (Updating). Once

the copy is done (“Sync done” transition), buffer A becomes Obsolete and buffer B becomes Current.

This latter transition must be atomic to ensure that at any time, one and only one buffer is in the Current

state. From now on, new readers will read B (the Current buffer). When buffer A has no readers any

more, it becomes Modifiable (“A readers = 0” transition). The next time a synchronization will be trig-

gered (second “Sync triggered” transition), the modified settings will be copied from the reference buff-

er to buffer A. When the copy is done (second “Sync done” transition), buffer A and buffer B atomically

change state, going respectively to Current and Obsolete. When buffer B has no readers any more (“B

readers = 0” transition), it goes back to the state Modifiable, which is the initial state.

A (c)
B (m)

A (c)
B (u)

A (o)
B (c)

A (m)
B (c)

A (u)
B (c)

A (c)
B (o)

Sync triggered

Sync done

A readers = 0

Sync triggered

Sync done

B readers = 0

A, B: buffer index
(c):buffer is in Current state
(o): buffer is in Obsolete state
(m): buffer is in Modifiable state
(u): buffer is in Updating state

Guarantee of atomicity in transitions
Our solution works provided transitions between states are atomic, as at

any point in time, one and only one real-time buffer must be in the Cur-

rent state. In order to guarantee atomicity of transitions, our implementation uses a structure for each buffer which

stores the buffer index (8 bits) and its readers count (24 bits) and can be read and incremented in a single atomic

operation (fetch and add). A pointer, whose value can also be changed atomically, designates the

current buffer. When a reader starts its execution, it increments the readers count and reads the

buffer index with a fetch and add instruction on the current buffer, using GCC’s built-in

__sync_fetch_and_add. When releasing the buffer, it uses an atomic decrement. Finally, the cur-

rent buffer pointer’s value is changed atomically when an Updating buffer becomes Current.

The Obsolete buffer is deduced from the current buffer pointer, making the transition of both

buffers atomic.

Current buffer
pointer

Index: 0 Readers’ count

Index: 1 Readers’ count

18 bits 224 bits

Buffer A

Buffer B

Strong real-time guarantees
 No memory allocation

 Consistent setting values throughout execution

 Constant, <5 ms jitter

 Pending setting values quickly visible

Buffer 1

Buffer 2

Operators
High-level
application

Real-time
task

Real-time
task

Real-time
task

Real-time

Non real-time

Pending
buffer pointer

Active buffer
pointer

Shared memory

Swap on new values

Not r
eal-t

im
e

co
m

plia
nt

Reference buffer

Real-time buffer A Real-time buffer B

Operators
High-level
application

Real-time
task

Real-time
task

Real-time
task

Real-time

Non real-time

Buffer
synchronizer

