
A MODULAR SOFTWARE ARCHITECTURE FOR APPLICATIONS THAT
SUPPORT ACCELERATOR COMMISSIONING AT MEDAUSTRON

M. Hager, M. Regodic
EBG MedAustron, Wiener Neustadt, Austria email: markus.hager@medaustron.at, milovan.regodic@medaustron.at

Abstract

Language

Measure.Profile().Of(device)

MeasureTrajectory.In(MEBT)

Operational Application

Optimize Trajectory

Procedure

Measure Trajectory

Executor

Measure Profile

Repository

Measurement

OpApp Functionality

0

0.5

1

1.5

2

2.5

3

0

0
.2

2
5

0
.4

5

0
.6

7
5

0
.9

1
.1

2
5

1
.3

5

1
.5

7
5

1
.8

2
.0

2
5

2
.2

5

2
.4

7
5

2
.7

I
n

te
g

r
a
te

d
 m

a
g

n
e
ti

c

fi
e
ld

 [
T

m
]

time [s]

100MeV

120MeV

140MeV

160MeV

180MeV

200MeV

220MeV

240MeV

Device Settings, Cycle Requests

Measurements, Beam data

MedAustron Accelerator Control System

Cycle Configuration

Operational Applications

Processed
measurements

Beam data

Optical settings, Beam characteristics

Device settings

Analysis Tools

The commissioning and operation of an accelerator requires a large set of
supportive applications. Especially in the early stages, these tools have to work
with unfinished and changing systems. To allow the implementation of
applications that are dynamic enough for this environment, a dedicated
software architecture, the Operational Application (OpApp) architecture, has
been developed at MedAustron. The main ideas of the architecture are a
separation of functionality into reusable execution modules and a flexible and
intuitive composition of the modules into bigger modules and applications.
Execution modules are implemented for the acquisition of beam measurements,
the generation of cycle dependent data, the access to a database and other
tasks. On this basis, Operational Applications for a wide variety of use cases can
be created, from small helper tools to interactive beam commissioning
applications with graphical user interfaces. This contribution outlines the OpApp
architecture and the implementation of the most frequently used applications.

OpApps can compute settings, like currents and voltages, for all accelerator devices based on the optical setup of the
accelerator and the desired beam characteristics. OpApps can apply the settings, request beam cycles and measure
the characteristics of the generated beam.

The OpApp framework is connected to a database. OpApps use the database to store data related to the beam
generation as well as acquired measurements and accelerator configuration. OpApps also retrieve and analyze
stored data.

To provide data to other tools, OpApps can generate files in a variety of different formats.
 OpApps are used for:
• Beam Commissioning - Main domain of Operational Applications
• Quality Assurance (QA) - OpApps that acquire measurements and compare them with stored reference data can

be used for a regular QA of the beam characteristics
• Configuration Management - With a set of database related execution modules OpApps can, for example, help to

import device specifications into the database or export stored data for the use in the Control System
• Accelerator and Beam Monitoring - OpApps can be used to acquire accelerator and beam data in the background

and log this data into the database. Additional OpApps can analyse the stored data and generate reports, for
example of the accelerator performance.

The core execution modules are separated into two different layers. On layer,
represented by Executors, is specific to devices and data structures. The other
layer contains Repositories that encapsulates the interaction with connected
systems, like MACS or the database. The repositories in this layer work with
generic data structures.

Many beam commissioning activities involve the execution of the same core
tasks, for example: "Request an accelerator cycle" or "Take a measurement with
a beam diagnostic device". Often the combination of some core tasks is
executed as part of other commissioning activities. Based on this realization, the
OpApp architecture enforces a separation of the core tasks into dedicated
execution modules and defines a mechanism that allows a flexible
composition of the different modules.

In the OpApp
architecture, all
execution modules
get registered in the
OpApp framework.
All modules also
have access to this
registry, to enable
access from every
module to every
module. This allows
a flexible
composition of
modules into bigger
modules and
applications.

Architectural Concept

foreach (var monitor in transferLine)
{

var beamProfile = MeasureProfile.With(monitor);
var position =
 CalculateBeamPosition
 .WithBias(percent: 15).From(beamProfile);

To allow domain experts to contribute to the development of Operational
Applications, the OpApp architecture specifies an own language. Via the
language the different execution modules can be retrieved from the OpApp
framework and be called in an intuitive way, similar to a natural-language.
The OpApp Language is implemented with a fluent C# API.

Conclusion

The OpApp architecture has proven to be an excellent basis for the development of software solutions that support
the commissioning and operation of the MedAustron accelerator. The modular design, enforced by the architecture,
has shown to allow a very quick adaptation and development of applications.
OpApps already build an indispensable set of tools for the commissioning and operation of the MedAustron
accelerator – and their importance will continue to grow, as there are many supportive applications waiting to be
developed.

var trajectory =

SetStrength.Of(magnet).To(milliard: 0.5);

var newTrajectory =

Save(newTrajectory).ToDefaultPath();

MeasureTrajectory.In(transferLine);

MeasureTrajectory.In(transferLine);

OpApp Language

Beam Scan Particle Logger Atomic OpApps

In the Beam Scan OpApp, first a
device and a beam monitor are
selected. Then a range of values for
an optical parameter is set. The
OpApp runs through all values,
computes and applies the
according device settings and then
measures the beam. In this way the
OpApp allows the determination of
the setting that results in the best
beam characteristics.

A common user interface has been implemented, together with a library of
visualization modules for different input parameters. The common interface
simplifies the development of OpApps by domain experts. OpApp authors mark
the required input parameters in the code with special attributes. The common
interface reads the attributes and automatically displays the according fields.

[ElementListParameter(AllChecked = false,
 DisplayName = "Monitors", Class = new ElementClass[] {
 ElementClass.QIM, ElementClass.ORB, ElementClass.QPM,
 ElementClass.SFX, })]
public List<BDElement> Monitors { get; set; }

Results

Atomic OpApps are started via a
common, generic user interface.
Atomic OpApps use the OpApp
language and can potentially be
written by domain experts.
Examples are: Trajectory
measurement, Kick Response
measurement, Execution of
beam cycles, …

The Particle Logger is a Monitoring
OpApp. It is composed of a service
OpApp and an analysis OpApp. The
service parasitically acquires
measurements of the beam current
and writes them into the database.
The analysis OpApp retrieves the
data, displays it and generates
performance indicators, for
example about the number of
particles in every cycle.

Research. Hope. MedAustron
One of the most advanced centers for Ion Beam Therapy and Research
in Europe is currently being built in Wiener Neustadt: MedAustron.

Tune
Plot

1,MR-00-001-MQZ,Strength,0.41677870
1,MR-02-000-MQZ,Strength,0.36761078
2,MR-00-001-MQZ,Strength,0.41465342

OpApp Input

