
REFERENCES
[1] T.J. Farrell, K. Shortridge, J.A. Bailey, “DRAMA: An Environment for Instrumentation Software,” Bulletin of the American Astronomical Society, Volume 25,
No 2, (1993).
[2] Allan P. M., “The ADAM software environment,” Astronomical Data Analysis Software and Systems I, 126 (1992) [3] Bailey J. A., et al., "DRAMA: an
environment for distributed instrumentation software," Proc. SPIE 2479 , 62 (1995)
[3] Taylor K., et al., “Anglo-Australian Telescope's 2dF Facility,” Proc. SPIE 2871 , (1997)
[4] ISO/IEC 14882:2011 “Information technology -- Programming languages -- C++” (2011)

Figure 2:. The TIPAN Starbugs metrology GUI, implemented using the Qt Widget set, is the
first implementation of a GUI using DRAMA2 . The buttons send DRAMA messages which
move the TIPAN Starbugs. The image display area shows a collection of starbugs under test –
each represented by 3 dots.

INTRODUCTION

The DRAMA API [1] remains the AAO’s primary tool for constructing complex
instrumentation systems and has been/is being used by various other observatories.
it implements a tasking model; with each named task responding to named
messages of a number of different types. In a DRAMA “System”, tasks can run
across different hosts in a heterogeneous environment. DRAMA was implemented
from about 1992 and was designed to be highly portable at a time before ANSI C
was available on all machines of interest. It has been run on many flavours of
UNIX/Linux, VMS, VxWorks and MS Windows, and provided the ability to write
soft1 real-time applications and with good performance on, for example, 30Mhz
68020 CPUs. The flexibility allowed systems as complex as the AAO’s 2dF system
[3] to be implemented – see figure 1, making use of the most appropriate hardware
for each job across a distributed system.
Most work is a DRAMA task is done in response to “Obey” messages – in effect,
command messages; implementing “Actions”. The design approach implements co-
operative multi-tasking; multiple actions can be running at the same time but must
deliberately return control to the DRAMA message reading loop between events to
allow other actions to run and for the action itself to be “Kicked” – sent a message
to change its behaviour in some way (typically, but not always, to cancel the action
cleanly). The approach has worked well and a strongly objected-oriented task
design approach was implementable for tasks written in C.
Attempts were made starting about 1994 to implement C++ interfaces for DRAMA,
but the results were relatively poor and various different approaches were tried. One
of the early issues was the poor portability of early C++ compilers, some features
such as templates and exceptions were not reliably implemented and were not
portable. Another was that we were still learning the best approaches to use.
Whilst DRAMA tasks using threads of various types have been implemented over
the years, DRAMA itself has not supported using threads, with its own co-operative
multi-tasking technique sufficient in most cases being more portable then threads
were. In the C API, task authors must work around DRAMA when using threads;
but in recent times, many libraries for component control have presumed threads
are available and thread support has become widespread and is presumed to be
available by most software engineers. We had been working on designs for proper
thread support for DRAMA over some years, but had not yet implemented it.
C++11 [4] was a major revamp to the C++ language: Threads are now supported
using a well thought out approach, by the compilers and standard libraries; Many
new features are provided by C++11 that assist library implementers to construct
quality interfaces; compilers of interest (GCC and Clang in particular) have
implemented the full feature set on machines of interest (Linux and Mac OS X). We
have taken advantage of the upgrade of C++ to implement DRAMA2, which will
simplify writing and maintaining complex DRAMA tasks.

ICALEPCS 2015 (Oct-2015)

Basic “Hello World” example
Example 1, left, shows “Hello World” in
DRAMA2.
This program implements a task named
“TASK1”, which has just one Action –
named “HELLO”.
Sending an Obey message with the name
“HELLO” will result in the message “Hello
World” being output and the task then
exiting.
The action is implemented by sub-classing
the abstract class “MessageHandler”
p r o v i d i n g a n i m p l e m e n t a t i o n o f
“MessageReceived()”.
Any number of actions can be added in a
similar way and they don’t normally cause
the task to exit, and may be invoked multiple
times in sequence.

Kicking Threaded Actions

A DRAMA Action can be “Kicked”, which provides a
method for other tasks to communicate with a running
action. Often used for Action cancellation, Kick messages
are flexible and a system design may use them to update a
running action.

In DRAMA2, the “WaitForKick()” method and related
methods allow a thread to wait for a kick message to be
received.

Alternatively, a “KickNotifier” object may be created
before say entering a CPU intensive loop. These objects
create a thread that waits for a kick message. The caller
can ask the object if a kick was received and respond
correctly.

Figure 1. With over 30 DRAMA tasks spread over 10 CPUs, the 2dF/HERMES system
is the largest example of an existing DRAMA system within the AAO. Its origins are
in the original 2dF DRAMA system commissioned in 1994, but it has been modified
many times since, including to support HERMES, showing the flexibility of DRAMA

Basic DRAMA2 Design
Implementation as wrapper around the C API
DRAMA2 is implemented as a set of wrappers around DRAMA C APIs,
compatibility with the large set of existing tasks can be easily maintained and
DRAMA2 could be implemented quickly.

Only one Thread reading DRAMA messages.
There is one and only one thread that actually blocks for and reads DRAMA
messages from the underlying message queue. Most of the “DRAMA” internal
processing is done within this thread. Other threads can send DRAMA messages
(and make other DRAMA API calls) but cannot actually read the messages. Much
potential complexity is removed and no changes are required to the DRAMA C
language internals when using this approach. If another thread needs to wait for a
DRAMA message to occur, it must wait on a C++ condition, which is notified by
the DRAMA thread when the message arrives.

Locking access to DRAMA structures
Locking is important to get right! Systems with multiple locks help to avoid lock
wait delays, but significantly increase the complexity of the design required to
ensure avoiding deadlocks. Since DRAMA2 is an API available to implement
applications, it is much harder to avoid deadlocks when using multiple locks. As a
result, only one lock is used and it must be taken by most methods that invoke the
DRAMA C API.
Use of the lock is normally internal to the DRAMA2 methods, but it can be used
by application specific code to access any DRAMA C API not yet available or for
application specific locking. Use of the DRAMA2 lock as the only lock in the
application would avoid deadlock. The DRAMA2 lock is safe for recursive use –
a thread that has already taken the lock will not deadlock if it attempts to take it a
second time.
The DRAMA2 design allows the DRAMA2 message read thread to block waiting
for a message without taking the lock. That thread only takes the lock when
processing a message. Since the lock is free any time the DRAMA2 message read
thread is waiting for a message, there is plenty of opportunity for application
threads to lock access to DRAMA and send messages themselves.
Status and error reports vs. C++ Exceptions
The DRAMA C API uses an inherited status convention. Most functions have a
“status” argument, which is a pointer to an integral type. An Error Reporting
System (ERS) enables extra contextual information to be added when errors
occur.
In C++, it is natural to replace the inherited status approach and ERS by
exceptions. An exception class is provided which is a sub-class of std::exception.
Any DRAMA2 method invoking a DRAMA C API must check the status returned
and, if bad raise an exception. The DRAMA2 exception class stores the integer
status value and information about the context and location of the exception.
At any point where the DRAMA C API must invoke a DRAMA2 method, there
must be an interface function. that has an inherited status argument. This function
must catch any exception thrown by DRAMA2. If the exception is the DRAMA2
exception, the original status value will be available and can be returned to the C
API as the status of the call, otherwise another status value will be returned. Any
extra context available in the exception will be reported using ERS.

Tony Farrell*, Keith Shortridge, (Australian Astronomical
Observatory)

Sending DRAMA
Messages

A “Path” class is provided to enable
sending DRAMA messages to other
tasks. In traditional C DRAMA,
message sending does not block
and an action must explicitly
reschedule to message handle
replies. In DRAMA2, message
sending is only possible from a
threaded action. The thread, but not
the task, is blocked to await replies.
As a threaded action can have child
threads, they may have any number
of messages outstanding at any
time.
The example to the left shows a
task implementing the action RUN,
which sends an Obey message with
the name HELLO to the task
TA S K 1 (o u r n o n - t h r e a d e d
example).
Optional arguments to Obey()
suppor t sending arguments .
Versions of this with timeouts are
available.
There a various message sending
methods, including the ability to
monitor for changes to the values
of parameters in other tasks.
By default, the methods will block
unt i l the subs id ia ry ac t ion
completes, but there are features
allowing overriding of the default
processing of the various possible
replies to a message.

Other Features
Self Defining Data Structures (SDS)
The sds::Id class provides access to DRAMA’s SDS objects, used to send
data between tasks. Action implementations can access any structure sent to them
and can send such structures as arguments in any message they send. Some
complexities of the underlying SDS system made writing a clean C++ interface
hard prior to C++11. In C++11, the move assignment and move copy operators
proved liberating, allowing an effective and relatively clean interface to be
constructed.

Accessing Command Line Arguments.
All arguments to actions are sent in an SDS structure, but there is a standard
approach to command arguments, which make allow simple generic programs to
be used send obey messages to any task. Various simple methods are provided by
the sds::Id class to construct such arguments. In action receiving the message,
sds::Id class methods can be used, but there is also an alterative interface – via the
“gitarg” namespace. These are a series of classes that create sub-classes of
standard types initialised from an SDS structure. For example, a gitarg::Bool uses
an SDS structure to initialise a Boolean type, accepting for example string values
“YES” and “NO” to indicate the value.

GUIs
DRAMA provides a number of GUI toolkits, Java and Tcl/Tk based GUIs being
commonly used at this point. These will continue to work with DRAMA2 tasks.
Additionally, new toolkits will be constructed using DRAMA2, with Python
likely to be the first.
The support for working with threaded systems easily ensures DRAMA2 can be
used with many other modern systems. The first DRAMA2 task implemented
outside the package itself was a GUI using the Qt widget set, an extensively
threaded environment – this is on e of the GUIs for the AAO’s TAIPAN project –
see figure 2.

DRAMA Parameters
Two classes are provided to support creating and accessing DRAMA Task
parameters. DRAMA Task parameters are represented within an SDS Structure,
so there is much overlap with SDS support. The class “Parameter” allows
parmeters to be created and accessed as if they are basic C++ types. E.g.,
assigned to and from.
The ParSys class is more traditional for DRAMA, allowing accessed to named
parameters via Get/Put methods supporting various types.

Logging
DRAMA’s logging system has been re-implemented to support threads. In
addition to output the standard DRAMA log information, it outputs the ID of the
thread from which is log message is generated.
Extensive use of RAII
Resource Allocation is Initialisation (RAII) is used extensively throughout
DRAMA2 to ensure correct management of locks and threads. For example.
Locks are always taken
.

Documentation and Regression Testing
An important part of the implementation of DRAMA2 was to ensure the documentation was created with the package, rather then the tradition of being tacked on later. The “doxygen” tool was chosen as the interface
documentation tool and all interfaces have been documented as the code was written.
A 130-page manual has been generated, working through all the many features of DRAMA2. The manual includes a large number of code examples, all of which is available as compilable code. Generation of the detailed
manual and the required examples quickly highlighted various flaws or unnecessary complexities in the initial interfaces, allowing them to be revamped before release.
As example programs were generated to demonstrate and test features they have been added to our regression test facilities. As a result, any change to DRAMA2, or the underlying DRAMA software, is automatically
subject to extensive testing.

*E-mail: tony.farrell@aao.gov.au

Threaded “Hello World”
example

In example 1 (above), the “HELLO”
action is running in the main
DRAMA thread. Whilst it can
“Reschedule”, in the traditional
DRAMA way to return control to
the DRAMA message thread, the
intent of DRAMA2 is to support
running actions in threads.
The class “thread::TAction”
i s an abs t rac t sub-c lass o f
“MessageHandler”. The user of
this class must provide the method
“ActionThread”, which is
invoked within a thread when an
Obey message of the specified name
is received. When the thread
completes, DRAMA is informed
and the action is marked as
completed. Importantly, all details
of thread creation; joining the thread
etc. is hidden by DRAMA2. Any
exception thrown by the thread is
reported via DRAMA2 as an action
failure – the task does not abort.
Example 2, right, shows a simple
implementation of a thread action.
Action threads can create their own
sub-threads, which can interact with
DRAMA, but the implementer is
then responsible for handling
creation, joining the thread, dealing
with exceptions in the thread, etc.

ICALEPCS 2015 -WEPGF100

DRAMA2 has quickly modernized the development of DRAMA tasks. It is well documented and
allows reliable tasks to be written quickly. It allows sequenced code to be written for sequenced jobs,
but with all the efficient non-blocking DRAMA messaging facilities available. Much of the (potentially
risky) complexity of creating threaded distributed applications is hidden from programmers using
DRAMA2, in the most common cases.

