

Murali Shankar, Luofeng Li*
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, U. S. A.

Abstract

EPICS Archiver Appliance

Appliance

*Work is supported by the U.S. Department of Energy, Office of Science
under Contract DE-AC02-76SF00515 for LCLS I and LCLS II.

 The EPICS Archiver Appliance was developed by a collaboration of
SLAC, BNL and MSU to allow for the archival of millions of PVs, mainly
focusing on data retrieval performance. It offers the ability to cluster appliances
and to scale by adding appliances to the cluster. Multiple stages and an inbuilt
process to move data between stages facilitate the usage of faster storage and the
ability to decimate data as it is moved. An HTML management interface and
scriptable business logic significantly simplify administration. Well-defined
customization hooks allow facilities to tailor the product to suit their
requirements. Mechanisms to facilitate installation and migration have been
developed. The system has been in production at SLAC for about 2 years now, at
MSU for about 2 years and is heading towards a production deployment at BNL.
At SLAC, the system has significantly reduced maintenance costs while enabling
new functionality that was not possible before. This paper presents an overview
of the system and shares some of our experience with deploying and managing it
at our facilities.

Michael Davidsaver
Brookhaven National Lab, Upton, NY 11973, U. S. A.

Martin Konrad
Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA.

Figure 1: Each appliance has multiple storage stages and multiple processes

Many storage configurations are possible. This is a typical configuration.
✓ Short term store - The most recent 2-3 hours of data; typically a RAM disk.
✓ Medium term store - The most 2-3 days of data; 15k SAS drives.
✓ Long term store - The rest of the data.

✓ At SLAC, this is bulk storage (with tape backups) that we rent; this is a
GPFS filesystem located elsewhere and is mounted over NFS.
✓ At MSU, this is a NetApp alliance with 2.8 TB of storage.

Each appliance has 4 processes; these are J2EE WAR files deployed on separate
Tomcat containers.
✓ Engine - Establishes EPICS CA monitors and writes data into STS.
✓ ETL - Moves data from the STS to the MTS and from the MTS to the LTS.
✓ Retrieval – Stitches data from all the stores to satisfy data retrieval requests.
✓ Mgmt – Executes business logic, manages the others and holds runtime
configuration state.
Each appliance has its own MySQL configuration database.
Communication is mostly JSON/HTTP.

Clustering

Figure 2: An installation is a cluster of appliances. Scale by adding appliances.
In this setup, all appliances use the same LTS. However, you can also have each
appliance use a separate LTS. The architecture is shared nothing.

Figure 3: Requests can be dispatched to any appliance.

Figure 4: Use traffic management between
clients and appliances.

Serialization

Listing1: Each PV’s config includes a list of data stores.

Each datastore is handled by a plugin; the default PlainPBStoragePlugin uses
Google’s Protocol Buffers; which provides future proof serialization.
✓ Each EPICS V3 DBR type is mapped to a distinct PB message.
✓ V4 NTScalars+NTScalarArrays map to their V3 counterpart PB messages.

✓ All other V4 types map to a generic PB message.
✓ On average, a PB ScalarDouble consumes about 21 bytes

Configurations are on a per PV basis. Each PV’s configuration is a JSON object
and includes a sequence of data stores.

"dataStores": [
"pb://localhost?name=STS&...&partitionGranularity=PARTITION_HOUR...",
"pb://localhost?name=MTS&...&partitionGranularity=PARTITION_DAY...",
"pb://localhost?name=LTS&...&partitionGranularity=PARTITION_YEAR..."
],

Data is stored in chunks; each chunk contain serialized PB messages
✓ One message per archive sample
✓ One sample per line.
✓ Sorted by their record processing timestamps (guaranteed)
The chunk key is enough to identify the boundaries of the contained data; for
example, EIOC/LI30/MP01/HEARTBEAT:2012_08_24_16.pb.
✓ The PV Name
✓ The time partition of the chunk (partition boundaries are strictly enforced)
The PlainPBStoragePlugin uses NIO.2
✓ One file per chunk
✓ Use NIO.2 to store in alternate key-value store

Data Retrieval
Plugins for CS-Studio and ArchiveViewer + new bundled HTML5 viewer.

Figure 5: HTML5 viewer (in development)

Figure 6: Processing data during retrieval; plot median and raw value on same chart

Support for processing the data during retrieval using post processors.
✓ Mean
✓ Median
✓ Standard deviation
✓ Others
Use these same operators to
✓ Precompute as part of ETL – speed up response.
✓ Decimate as part of ETL – reduce data as it ages.

0

1000

2000

0

20

40

60

80

< 1 day 1 day 1-2 days < 1 week < 1 month < 6 months > 6 months

Retrieval time ranges and response

% of requests Average Response(ms)

(ms)

Figure 7: Response times and % of requests vs time span of requests

Requests are categorized in terms of their time span (endtime – starttime)
✓ Over 75% of requests are for < 1 day and complete within 100ms (average)
✓ Time spans of up to a week take an average of 250ms
✓ Time spans of a year with data reduction can complete in a couple of seconds
 ✓ At runtime, binning over 30 million samples into about 8000 samples.

Data retrieval over HTTP in multiple formats; URL has just pvName + times.
✓ JSON
✓ CSV
✓ MAT
✓ RAW
✓ TXT
✓ SVG
✓ Easy to add new MIME types.
Common client tools
✓ Python
✓ Matlab
✓ JMP
✓ Excel
✓ Others.
carchivetools – Python based command line tools
✓ Get data for a time range – this uses the RAW response.
✓ Search for matching PV’s

Channel Archiver Integration
Transparently proxy the ChannelArchiver XMLRPC server
✓ No need to migrate data to new format
✓ However, MSU has developed utilities to do so if desired.
Import ChannelArchiver XML config files
carchivetools has two backend servers
✓ a2aproxy
✓ archmiddle
Use as a switchable proxy between a ChannelArchiver and an EPICS Archiver
Appliance

Installation
System requirements - Server class machine + Recent versions of
✓ Linux
✓ Java
✓ Tomcat
✓ A browser
Other requirements
✓ MySQL – for config.
Installation using
✓ Puppet modules – makes installation a breeze
✓ Some scripts
✓ Quickstart – Quick setup to evaluate

Archive PV workflow
When users add a PV to the archiver, we
✓ Measure event rate/storage rate
✓ Get RTYP, NAME, ADEL, MDEL etc
✓ Call installation specific policy (Python script)
✓ Policy makes configuration decisions
✓ Use capacity planning to assign PV to an appliance in the cluster
✓ Start archiving
Archive fields HIHI, LOLO as part of regular PV

Administration

Figure 8: Web based UI for management

All business logic is JSON/HTTP; both UI and scripting use these.
✓ Add/Modify/Delete PV
✓ Pause/Resume PV
✓ Reshard/Consolidate
✓ Many more

Figure 9: Many reports based on runtime+static data; also accessible from Python

Possible to script the entire monitoring and administration of a cluster of
appliances using Python scripts

Name Lab # PVs GB per day Years #appliance

LCLS SLAC 200K 19 1.5 3

NSLS2 BNL 61K 42 0.5 1

NSCL MSU 83K 1 2 2*

FACET SLAC 34K 1 2 1

TestFac SLAC 37K 1 2.5 1
Table 1: Production facilities; note NSCL uses 2 appliances for redundancy

