# Design and Status for the Electron Lens Project at the Relativistic Heavy Ion Collider J.P. Jamilkowski, Z. Altinbas, M.R. Costanzo, T. D'Ottavio, X. Gu, M. Harvey, P.K. Kankiya, R.J. Michnoff, T.A. Miller, S. Nemesure, T.C. Shrey

#### e-Lens Goals & Design



The Blue and Yellow e-Lenses are installed in the RHIC Ring at Interaction Region 10, in order to partially counteract the head-on beam-beam tune shift effect on the colliding RHIC beams, and thus permit RHIC proton beam operations at higher beam intensities, and therefore higher colliding beam luminosities for RHIC experiments. the First commissioned during the FY2014 run, both electron lenses were successfully operated on a routine basis in a DC mode during the FY2015 RHIC 100 GeV polarized proton run.

## Synoptic User Interface



Schematic of an Electron Lens installed at RHIC IR 10: one apparatus for the Blue Ring, and one for the Yellow Ring.

The main components of each e-Lens are the electron gun, electron collector, and superconducting solenoid magnet, though a set of additional systems are required for their routine operation. Beam transport magnets of both superconducting and non-superconducting varieties are controlled through two separate sets of standard VME hardware and software: warm magnets use equipment (PSC, QFG, and PSI) developed for the Injector machines within the Collider-Accelerator Department, and the cold magnets utilize the RHIC equipment (WFG, MADC) for reference control and readbacks. Another system of note is beam instrumentation, which is primarily comprised of BPMs, current transformers, YAG crystal-based beam profile monitors, pinhole raster scan beam profilers, as well as new electron backscatter detectors (described below, right).

## Key Controls Infrastructure

- Timing System
  - VME hardware based (VxWorks)
  - RHIC Event Link core
  - RHIC Beam Sync Link
  - Server-based remote interface for e-Lens mode control



| Beam Modes and Timing<br>Off                      | Beamline Status      | Gun vacuum (Torr): 2.1       | e-10 B-GSY curren  | nt [A]: -80 -80  | E            | 3-SLY current [A]:      | 0             | B-CSY current [A]: 80 | 80 Collector       | vacuum [Torr]: 4.1e                             |
|---------------------------------------------------|----------------------|------------------------------|--------------------|------------------|--------------|-------------------------|---------------|-----------------------|--------------------|-------------------------------------------------|
| O Burst                                           | YAG screen:          | Cathode Heater Status:       | Recovery Tape      | PS HV Status:    | Recovery Tap | Beam Ready :            |               | Gauges P              | et Page PS Pet Pag | ge MPS Pet Pa                                   |
| <ul> <li>Continuous</li> <li>Parasitic</li> </ul> | lon collector:       | Beam Modes and Timit         | ng                 | Beamline Status  |              | Beam Current and Energy | <u>▲</u> 0_50 | Current Im Al:        |                    | Modulator Const<br><sub>[</sub> P Value (uA V^- |
| <ul> <li>TrueDC</li> <li>NotchedDC</li> </ul>     | eBSD rate [Hz]: 5.50 | OBurst<br>Continuous Pulse w | idth [bkts]: β30 📩 | YAG screen:      | Home         | Reflector [KV]: 1.6     | × -1.60       | Beam size [mm]:       | 0.84               | DC:                                             |
| Make Live                                         | Gun valve:           | Parasitic D                  | elay [bkts]: 288   | lon collector:   | In           | Cathode heater [A]: 2.7 | × 2.68        | Beam energy [keV]:    | -4.978             | Paras:                                          |
| Off Burst Timing Pet Page                         | Collector valve:     | NotchedDC Charge w           | idth [bkts]: 100   | eBSD rate [Hz]:  | 1.5e+01      | Cathode bias [kV]: -5   | -4.98         | Collector [kV]:       | 1.6 1.58           | Scale                                           |
|                                                   |                      | Make Live                    | elay [bkts]: -150  | Gun valve:       | 0pen         | Modulator 1 [kV]: 2.1   | × 2.08        | MPS Status e I        | Beam p Beam        | DC:                                             |
| •                                                 |                      | Parasitic Burst              | Timing Pet Page    | Collector valve: | 0pen         | Modulator 2 [kV]: 1.8   | × 1.76        | ОК                    | On Off             | Paras:                                          |
|                                                   |                      |                              |                    |                  |              |                         |               |                       |                    |                                                 |

Synoptic-type user interfaces for the Blue and Yellow e-lenses, developed using the Syndi application.

In addition to the more commonly used user interfaces within the Controls System at the Collider-Accelerator Department at Brookhaven National Laboratory, the Syndi editor and display application has been adapted from the original version developed at FermiLab. Due to the compact and complex nature of the electron lenses, these synoptic displays have evolved to serve an important role in the operation of the equipment.

Development of the control pages themselves has migrated since their inception from the Syndi software developer, to the project physicist, and ultimately to a member of the RHIC Operations group. While capable of embedding complex business logic within each page, we have elected to minimize the amount of such logic implemented within the page in favor of server-based software that leverages critical functionality, such as parameter caching.



- Machine Protection System
  - National Instruments CRiO
- Beam Instrumentation
  - Gigabit Ethernet Cameras (Aravis library)
  - SiS VME scalers
  - CAEN VME ADCs
  - OMS VME stepper motor controllers
  - VMIC 3122 ADCs





Schematic of the e-Lens timing system, including RHIC components (bldg. 1004A) and e-Lens-specific components (1010B).

| ▼ SRHIC/Systems/ELens/MPS/BlueMPS        |             |              |  |  |  |
|------------------------------------------|-------------|--------------|--|--|--|
| Page PPM Device Data Tools Buffer        |             | H            |  |  |  |
| BLUE E-LENS MPS                          |             |              |  |  |  |
|                                          | Reset       | UpdateA11    |  |  |  |
|                                          | CTATUC      |              |  |  |  |
|                                          | STHIUS      | ENHOLE STHIE |  |  |  |
| ANODE MODULATOR POWER SUPPLY             | Fault       |              |  |  |  |
| ANODE MODULATOR BEAM PULSE TRIGGER       | Fault       |              |  |  |  |
| BSD Beam Intercept                       | Disabled    | Disable      |  |  |  |
| Global Beam Loss via Cathode Bias PS     | Disabled    | Disable      |  |  |  |
| Cathodo Riac PS Voltago Loco             | OK          | Enable       |  |  |  |
| Electron Collector PS Voltage Loss       | Eault       | Enable       |  |  |  |
| Electron Reflector PS Voltage Loss       | Fault       | Enable       |  |  |  |
|                                          | , auto      | LIGNIG       |  |  |  |
| CS1 B & Y PS Current Loss                | Fault       | Enable       |  |  |  |
| GS1 B & Y PS Current Loss                | Fault       | Enable       |  |  |  |
| GSB & CSB PS Current Loss                | ОК          | Enable       |  |  |  |
| GS2 & CS2 PS Current Loss                | 0K          | Enable       |  |  |  |
| Steerer GSX PS Current Loss              | Fault       | Enable       |  |  |  |
| Steerer GSY PS Current Loss              | Fault       | Enable       |  |  |  |
| Steerer CSX PS Current Loss              | Fault       | Enable       |  |  |  |
| Steerer CSY PS Current Loss              | Fault       | Enable       |  |  |  |
| Flasher Callester Temperature            | <b>F</b> ]+ | Europh Le    |  |  |  |
| Electron Collector Temperature           | Fault       | Enable       |  |  |  |
| SC Eninge 1-2 PS Cumpont Loop            | Fault       | Enable       |  |  |  |
| SC Main PS Current Loss                  | Fault       | Enable       |  |  |  |
| Extraction Arm Valve Status              |             | Enable       |  |  |  |
| Extraction Arm Pressure                  | OK          | Enable       |  |  |  |
| Injection Arm Valve Status               | OK          | Enable       |  |  |  |
| Injection Arm Pressure                   | 0K          | Enable       |  |  |  |
| Ring Pressure                            | ОК          | Enable       |  |  |  |
|                                          |             |              |  |  |  |
| Water System Flow                        | Fault       | Enable       |  |  |  |
| Water System Switch                      | ОК          | Enable       |  |  |  |
| Water System Temperature                 | Fault       | Enable       |  |  |  |
|                                          | F           | En el 1      |  |  |  |
| Anode Modulator 1 and 2 PS Status        | Fault       | Enable       |  |  |  |
| HNODE MODULATOR FW & Freq Limiter Status | Fault       | Enable       |  |  |  |
| Electron Collector PS Status             | Fault       | Enable       |  |  |  |
| GS1 B & Y PS Status                      | Fault       | Enable       |  |  |  |
| GS1 B & Y PS Current Under Limit.        | Disabled    | Disable      |  |  |  |
| Anode Bias Voltage Measurement Status    | Disabled    | D LOOM LO    |  |  |  |
| 0-                                       |             |              |  |  |  |
| ANODE MODULATOR BEAM PULSE TRIGGER       | Fault       |              |  |  |  |
| GUN DRIFT TUBE BEHLKE SWITCH             | ON          |              |  |  |  |
| Anode Bias PS Voltage Loss               | Fault       | Enable       |  |  |  |

For RHIC Run FY2015, a beam new type of instrumentation called an electron backscatter detector (eBSD) was commissioned in both e-Lenses. Positioned on gun side of the the apparatus, it provides a scaler signal representing the count of backscattered electrons the fraction of from successful interactions between the electron beam and RHIC beam. Since this alignment signal is dependent, it can be used for automated tuning feedback within the standard Interaction Region steering application for RHIC, called LISA.



LISA application plot showing X and Y transverse beam steering optimization in RHIC IR 10 based on eBSD measurements.

At right, you can see the application output after one pass of optimization on the eBSD scaler data for the Yellow e-Lens.

Jul 19, 2013 5:28:13 PM: Opening 20130719\_YAG beam profile.png Jul 19, 2013 5:28:18 PM: Finding Center of Gravity... Jul 19, 2013 5:28:28 PM: Determining Arbitrary Axis...

Electron beam profile data provided by the e-Lens Image Analysis application using GigE camera data obtained by inserting YAG crystal instrumentation into the beam path.

| The two inputs below are                                                 |          |             |  |  |  |  |
|--------------------------------------------------------------------------|----------|-------------|--|--|--|--|
| for troubleshooting purposes UNLY:<br>Anode Modulator Ream Trigger       | Disshlad |             |  |  |  |  |
| Anode Modulator Negative Bias Voltage                                    | Disabled |             |  |  |  |  |
| Libuo houliuoor hoyuorro Diub forougo                                    | DIDUDIDU |             |  |  |  |  |
| CATHODE BIAS POWER SUPPLY                                                | 0K       |             |  |  |  |  |
| Injection Arm Pressure                                                   | ОК       | Enable      |  |  |  |  |
|                                                                          |          |             |  |  |  |  |
| CATHODE HEATER POWER SUPPLY                                              | ОК       |             |  |  |  |  |
| Injection Arm Pressure                                                   | OK       | Enable      |  |  |  |  |
| Cathode Heater Over I or V                                               | OK       | Enable      |  |  |  |  |
| Cathode Heater Current OK                                                | Fault    |             |  |  |  |  |
|                                                                          |          |             |  |  |  |  |
| CONTROL ELECTRODE POWER SUPPLY                                           | 0K       |             |  |  |  |  |
| Injection Arm Pressure                                                   | 0K       | Enable      |  |  |  |  |
|                                                                          |          |             |  |  |  |  |
| ELECTRON COLLECTOR POWER SUPPLY                                          | Fault    |             |  |  |  |  |
|                                                                          |          |             |  |  |  |  |
| ₩(17,1) "text"                                                           | Nu       | dge:0 🛒 🛓 🕄 |  |  |  |  |
| monitoring<br>Wed Oct  7 21:12:57 2015: Get and Async requests complete. |          |             |  |  |  |  |

Gun Drift Tube Behlke Switch Status OK

Anode Modulator 1 and 2 PS Status Fault

node Bias PS Status - Fault

Anode Bias Voltage Measurement Status Disabled Disable

Enable

The Machine Protection System interface for the Blue e-Lens, showing a sampling of the current logic inputs and outputs.



#### ICALEPCS 2015 Melbourne, Australia

Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U. S. Department of Energy