European XFEL Cavities Piezoelectric Tuners Control
Range Optimization

W. Cichalewski, A.Napieralski, DMCS, Lodz, Poland
J. Branlard, C. Schmidt, DESY, Hamburg, Germany

Abstract Introduction

The piezo based control of the superconducting cavity tuning has been under the development Both FLASH and European XFEL are free electron lasers facilities that build up accelerated
over last years. Automated compensation of Lorentz force detuning of FLASH and European beam energy using superconducting linacs. Superconducting cavities are or will be operated
XFEL resonators allowed to maintain cavities in resonance operation even for high accelera- in pulse mode with 10 Hz repetition range and field gradients up to 30 MV /m. This work
tion gradients (in range of 30 MV /m). It should be emphasized that cavity resonance control conditions causes extensive Lorentz force based reaction on the structure walls. This cause me-
consists of two independent subsystems. First of all the slow motor tuner based system can chanical deformation in range of few micrometers. For around 1 meter long, 1,3GHz resonant
be used for slow, wide range mechanical tuning (range of hundreds of kHz). Additionally the frequency, niobium resonator such a length change induces dynamic detuning modification in
piezo tuning system allows for fine, dynamic compensation in a range of 1 kHz. In mentioned the range of couple hundreds of hertz. As cavities loaded quality factor is high (range from
pulse mode experiments (like FLASH), the piezo regulation budget should be preserved for 3e6 for FLASH to 4.6e6 for XFEL) such misalignment results in significant accelerating field
in-pulse detuning control. In order to maintain optimal cavity frequency adjustment capa- eradient drop. This have to be compensated by increase of supplying RF power - in order to
bilities slow motor tuners should automatically act on the static detuning component at the maintain constant beam energy level. The other possibility to minimize this effect is external
same time. This paper presents work concerning development, implementation and evalua- mechanical excitation provided by slow (step motors) and fast (piezo elements) cavity tuners.
tion of automatic superconducting cavity frequency control towards piezo range optimization.

FLASH and XFEL dedicated cavities tuning control experiences are also summarized.

Algorithm implementation

Motivation The piezo range optimization algorithm has been developed and implemented as DOOCS
server. Application has been realized basing on the DOOCS framework. Piezo and motor
Resonators tuning approaches operations are relatively slow process in comparison to fast LLRF feedback loop. That is why

| | Slow motor tu.ner: o Piezo tuner: the server has been prepared as a middle layer process. The server communicates with the
« provide wide range of tuning - limited range ( 1,2 kHz) LLRF diagnostics server in order to receive cavity detuning calculations readout. Addition-

= reaction 18 a time consuming « fast reaction ally it connects to the LLRF controller server that provides information about current piezo

- suitable for static tuning - suitable for dynamic and static tuning components drive settings. Since slow motor tuner acts as a actuator in this slow feedback
Lorentz Force Detuning (LFD) increases rapidly with accelerating gradient. It is desired to loop also communication with motor management server is provided.
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Piezo range optimization algorithm

/adjust_piezu_vultage <<precondition>>  (main algorithm iteration step, realized during server \ Initial alg()rit hm evaluation
update method call (eq. 1 time/s))
- motor transfer function should be known,
- piezo fransfer function between voltage and funing should be known Algorlthm tests environment:
- piezo tuning parameters (gain, tfuning step limit, etc) .
o - FLASH facility (ACC3)
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<flow> yes |: iimit" state ] = cavity frequency regulation by piezo automation feedback,
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s ~ The algorithm has been extended by exception handling mechanisms:
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iterration step pel”l()d Of tlme;
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! specific period of time,
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check If this 1s last iteration °
steo Conclusions
%[ ncrease iteration 1 > Piezo based cavity tuning system is widely used during operation of TESLA cavities in high
siep counter <flow= no . .. . . . . . .
J eradient conditions. Tuner range optimization for Lorentz force detuning suppression is a
<flow>yes must in case of variable energy settings for the linac. Presented algorithm optimizes fast
4 tuners dynamic range by means of slow motor system readjustment. Cavities characterization
® y ge by y J
\ / provide necessary data for best application configuration. Initial tests performed in accelerator

environment proofs algorithm usefulness. That is why the decision has been taken concerning
Figure 4: Piezo dynamical range optimization algorihtm overview application integration in overall software framework for automatic tuners systems operation.




