
The Controls Configuration Service (CCS) is a key component in CERN’s data driven accelerator Control System. Based
around a central database, the service also provides a range of client APIs and user interfaces - enabling configuration of
controls for CERN’s accelerator complex. The service has existed for 35 years (29 based on Oracle DBMS).

To cater for changing requirements and technology advances there has been substantial evolution of the CCS over time.
Inevitably this has led to increases in CCS complexity and an accumulation of technical debt. These two aspects combined
have a negative impact on the flexibility and maintainability of the CCS, leading to a potential bottleneck for Control
System evolution.

This paper describes on-going renovation efforts (started mid-2014) to tackle the aforementioned issues, whilst ensuring
overall system stability. In particular, this paper covers architectural changes, the agile development process in place -
bringing users close to the development cycle, and the deterministic approach used to treat technical debt. Collectively
these efforts are leading towards a successful renovation of a core element of the Control System.

Abstract

Renovation of the CERN Controls Configuration Service
Lukasz Burdzanowski, Chris Roderick

CERN, Geneva, Switzerland ICALEPCS 2015

References
[1] J. Cuperus et al., ICALEPCS1997 – ID085, [2] R. Gorbonosov, The Control Systems of the Large Hadron Collider, CERN Academic Training Lecture Regular Program, http://cds.cern.ch/, [3] J. Cuperus et al., ICALEPCS2003 – WE114, [4] M. Arruat et al., ICALEPCS2007 – WOPA04,
[5] G. Kruk et al., ICALEPCS2013 – MOCOBAB05[6] MM. Lehman, Laws of Software Evolution Revisited, EWSPT '96., [7] C. Larman, Applying UML and Patterns – An Introduction to Object-Oriented Analysis and Design and Iterative Development (3rd ed.), ISBN 0-13-148906-2, Prentice Hall, (2005) [2004]
[8] T. Ohno, Toyota Production System: Beyond Large-Scale Production, ISBN 978-0-915299-14-0, Productivity Press, (1998), [9] H. Kniberg, Lean from the Trenches: Managing Large-Scale Projects with Kanban (1st ed.), ISBN 978-1934356852, Pragmatic Bookshelf, (2011)

1. Identify boundarie - to clearly know when the activity should finish.
2. Identify clear gains - to justify the effort. The gains should be
 tangible, based on facts.
3. Identify risks - to know the impact both within and outside the
 service.
4. Define rollback / fall-back strategy - to limit any potential negative
 impact, mainly in critical areas.
5. Estimate and prioritize - to realistically plan the effort alongside
 regular activities.

Example chart showing count of invalid objects in
development database, aggregated per months.
Resul of database schema analysis over one year.

With SCA in place we are
able to evaluate our efforts
over time, relying on factual
data rather than assumptions.

Addressing technical-debt
In most cases, end users are not directly aware of the technical debt
but as software engineers we should perceive it as negative value. It
is adverse to system architecture and design, which are planned,
deliberate and visionary.

Static Code Analysis with Commons4Oracle
The static code analysis (SCA) is the analysis of computer
software source code on the contrary to dynamic analysis, which is
based on code execution.

Commons4Oracle provide a custom SCA framework which includes
a pre-defined set of analysis rules, which can be customized and
extended

The analysis results, fluctuations and evolution of the metrics are
the inputs to qualitative assessments and serve as a basis for
future planning.generates reports summarizing the number of rule
violations, severity and links to the source. The reports are used to
identify areas for in-depth analysis and planning of the re-factoring.

targeted re-factoring

is predefined as a concrete group of tasks
based on the following criteria

the value to be gained from the re-factoring
can be classified into distinct areas
1. Consistency – i.e. limiting the likelihood of data corruption and/or of
 non-deterministic states.
2. Performance – improving the response times for data reporting and
 querying for clients.
3. Maintenance – lowering: the total cost of development, likelihood of
 introducing new errors, and the usage cost paid by clients (e.g. by
 obscurity APIs or lack of documentation).
4. Agility – ensuring the extendibility of the architecture and limiting
 the cost / time of delivering new features to clients.

The renovation of a mission critical service with many years of history is a challenge. Alongside changing requirements,
growing expectations and needs to consolidate various sub-systems of the Control System, the CCS started to play an
even more important role during recent years. The necessity to adapt to these changes and satisfy new requirements is
the driver for the on-going CCS renovation.

Progressively reducing technical debt increases overall agility, but more importantly it also helps to design a better
system for the future. CCS users now have a much better understanding than previously of the value of these changes
and together with their increased satisfaction – renovation and technical debt reduction is perceived as added value.

The Kanban way noticeably improved the CCS team efficiency and contributed to increased end-user satisfaction. New
architecture solutions lay foundations for an advanced, cohesive and agile system that embraces the context and
workflows of how CCS users work. The renovation started over a year ago marked the beginning of a new and exciting
era in the long history of the Controls Configuration Service of the CERN Controls system.

Conclusions

Architecting for the future
Renovation and supporting changes in system architecture fall into
four main categories. All of them are closely related, define
bounderies and shape the renovation.

Commons4Oracle

context based access to the data
By attaching state information to core domain entities in the system
(e.g. devices), we can now automatically notify users interested in a
given “domain event”.
The high-level domain specific events, i.e.: FEC Renamed, give the
users an opporutnity to subsribe and track changes to these entites
which are particulary important.Workflow based transition of data in
the system help and guide users while limiting potential errors.

phasing-out of proprietary GUI technologies
On average per day there are over 150 distinct user sessions (from a
total of ~400 distinct registered users)

By moving to widely adapted solutions of Java based RESTfull
services and HTML5/JavaScript web interfaces we adapt the
technology stack which steadily gains popularity within the software
engineering community and in turn facilities hiring of well-trained
specialists.

system-wide tracing, monitoring, auditing
With tracking and auditing the time and/or user behind a given action
is captured along contextual information like client IP address,
database session and transaction IDs, name of the program unit and
invoked action.

The context information is used to augment historical data tracing
which gives insight to a concrete action which was invoked by the
user. Stack of actions is captured as well making it possible to follow
user actions in order to better understand a problem or to optimize
existing worklflows.The instrumentation considerably limits the time
needed to support users in investigating suspected data problems,
and potentially recovering data.

With tracking and auditing the time and/or user behind a given action
is captured along contextual information like client IP address,
database session and transaction IDs, name of the program unit and
invoked action.

The context information is used to augment historical data tracing
which gives insight to a concrete action which was invoked by the
user. Stack of actions is captured as well making it possible to follow
user actions in order to better understand a problem or to optimize
existing worklflows.The instrumentation considerably limits the time
needed to support users in investigating suspected data problems,
and potentially recovering data.

lowering system complexity
During the process of suppressing accidental complexity / lowering
overall complexity we have started to progressively adapt the event
driven architecture.

New developments and on-going re-factoring conforms to GRASP
(General Responsibility Assignment Software Patterns) patterns of
Object-Oriented design, tailored to the world of relational databases.

To support these changes we have adapted Commons4Oracle (C4O)

Is a set of PL/SQL libraries for Oracle
database, which is actively developed in the CERN Controls group.
The library assures further standardization and foundations for future
development and streamlines solutions in the CCS with other core
database projects of the group thus enabling transfer of knowledge
and expertise.

During the process of suppressing accidental complexity / lowering
overall complexity we have started to progressively adapt the event
driven architecture.

New developments and on-going re-factoring conforms to GRASP
(General Responsibility Assignment Software Patterns) patterns of
Object-Oriented design, tailored to the world of relational databases.

To support these changes we have adapted Commons4Oracle (C4O)

All of renovation aspects are closely related as suppression
of technical debt is essential in order to advance the
system architecture, while taking proper architectural and
design decisions prevent further “erosion” in the system and
limit existing technical debt.

The adapted software development process facilitates
implementing changes: enabling a lower overall cost of
development and increased agility.

The first two aspects are a mid–to–long–term perspective.
The implementation of the Kanban is already well advanced
and can be considered finished by the end of 2015.

Renovation Strategy
In the middle of 2014 the first major service-wide renovation and
overhaul has started – marking the beginning of a new chapter in its
long history.

the corner stones

in summary

Suppression of the accumulated technical debt
Changes in the overall architecture

Adaptation of the Lean software development process

CERN Controls
Configuration Service

The CCS exists for more than 30 years, during which the scope,
architecture, implementation technology and development
methodology have kept evolving.

The criticality of the service for safe operation of the accelerators
chain is high (though not required for their safe shutdown): The
CCS is essential for proper accelerator configuration and start-up –
especially during Technical Stops when equipment and other
components of the Controls System undergo maintenance and
upgrades.

The scope of the CCS was initially limited to the PS (Proton-Synchrotron) complex
controls system, meaning that the service and its database were oriented towards a
concrete accelerator and its specific control system.

The first relational database was introduced in 1986. Over the years the scope grew
following the evolution of CERN’s accelerator complex. 1995 marks the introduction of
graphical user interfaces (GUI) based on Oracle Forms and PL/SQL Web Toolkit (OWA).

The first Java based data access API was implemented in 1999 facilitating access for
high-level applications. Starting in 2006, another Oracle based GUI solution (ADF – a
Java Server Faces implementation) was put in place to replace existing OWA and Forms
applications. In 2009, APEX (a subsequent framework for building database-driven GUI’s)
was adapted alongside ADF.

database level client APIs
PL/SQL programmatic access used
from both high-level application and for
database-to-database intergration

database oriented architecture

Oracle database (RAC cluster)
The database is implemented using a
relation model, with approximately 700
domain tables and ~7GB of core
domain data (excluding binary, log and
history data which collectively accounts
for ~115GB)

high-level client Java APIs

Graphical User Interfaces
Numerous GUIs based on proprietary
Oracle technologies: Application
Development Framework (ADF) and
Oracle Application Express (APEX).

architecture of the Controls system as seen from
the perspective of the high-level applications

overview of the Control system network topology

high-level software
e.g.: high-level settings
management, data acquisition
and archiving

data-driven multi-layer infrastructure

middleware layer
e.g.: read/write access to
processes running on FECs
and Role Based Access
Control (RBAC)

low-level components
hardware and software, e.g.:
timing infrastructure, equipment
drivers, Front-End Computers
(FEC), end-user developed C/
C++ binaries representing
operational “devices”

CERN Controls
System

Brief history of the service

development
44.4%

refactoring
29.3%

tech-debt
reduction
21.2%

documentation
2.0%

By changing the way tasks are prioritized and visualized has led to a
reduction in pressure and stress on developers.

CCS end-users are now much more closely involved in the
development process and act as true stakeholders thanks to effective
visualization of work in progress and clearly identified stages of the
development cycle. These human factors are proving to be essential
to the success of the on-going renovation.

Regular retrospectives and critical analysis of changes applied to the
working process have positively transformed the way the CCS team
works.

too much work in progress
too many unrelated tasks started
too many new features waiting
in quality assurance queue

limit
excesive context

switching

CCS Kanban board showing current
tasks: backlog, to-do, in progress, QA,
deployed, done and more...

Kanban
The Kanban emphasizes continuous improvement, importance of
human factors and bringing maximum value to the organisation.

it is all about eliminating wastes

By visualising the work on
a Kanban board, bottlenecks
were quickly identified.
Focus and effort need to
control flow of work has
been noticeably reduced.

in summary

visualize your work

weekly planning board showing pending tasks, time needed to complete the tasks, remaining capacity

By not relying on fixed
development iterations or
sprints the trust from end-
users increased as their
requested features and bug-
fixes are not systematically
subjected to prolonged wait
times due to extensively
planned ahead sprints.

be pragmatic

The agility and reactivity of the team and CCS as a whole has
increased. Thanks to the Kanban / Lean philosophy of just-in-time
delivery every team-member can use her or his potential focusing on
activities that bring the most value to end-users increasing their
satisfcation.

work in a team

know where time is spent
With weekly retrospectives, monthly
summaries and quarterly reviews we
keep track of spend time per activity,
domain or issue type.

Distrubution of time per task
qualifier during Q2 of 2015

