
Karabo-GUI: THE MULTI-PURPOSE GRAPHICAL FRONT-END FOR
THE Karabo FRAMEWORK

Burkhard Heisen, Martin Teichmann, Kerstin Weger, John Wiggins,
European XFEL, Hamburg, Germany

Abstract
The Karabo GUI is a generic graphical user interface

(GUI) which is currently developed at the European XFEL

GmbH. It allows the complete management of the Karabo

distributed control and data acquisition system. Remote

applications (devices) can be instantiated, operated and ter-

minated. Devices are listed in a live navigation view and

from the self-description inherent to every device a default

configuration panel is generated. The user may combine

interrelated components into one project. Such a project

includes persisted device configurations, custom control pan-

els and macros. Expert panels can be built by intermixing

static graphical elements with dynamic widgets connected

to parameters of the distributed system. The same panel

can also be used to graphically configure and execute data

analysis workflows. Other features include an embedded

IPython scripting console, logging, notification and alarm

handling. The GUI is user-centric and will restrict display or

editing capability according to the user’s role and the current

device state. The GUI is based on PyQt technology and acts

as a thin network client to a central Karabo GUI-Server.

THE KARABO DISTRIBUTED CONTROL
AND DATA ACQUISITION SYSTEM

Karabo is the control and data acquisition system which

will be used on all beamlines of the European XFEL to

control the equipment, acquire data and process it [1]. It is

a centralized system where all communication is done via a

central broker, except for high-bandwidth data streams which

are transported via dedicated point-to-point connections.

A Karabo system is a collection of devices. Those devices
can serve many purposes, they might be a driver for a partic-

ular hardware, a composite device that controls several other

devices if some coordination between different hardware is

necessary, a data processing device that may be just one of

hundreds of equal ones in a server farm processing data, or a

device saving raw or processed data to disk, not to mention

many service devices which keep Karabo running.

There are many different approaches of a GUI for a control

system. Some use an already existing development enviro-

ment and extend them to the needs of developing GUIs (e.g.

GDA [2], CSS [3]). Others developed stand-alone graphical

editors (e.g. JDDD [4], Taurus [5]). Karabo has one fully

integrated GUI, which is not only a graphical editor but can

be used for all control and data acquisition tasks.

PROJECTS
A typical user of Karabo is not interested in the entirety of

the system, rather a specific task to work on. Those tasks are

often overlapping, as an example a vacuum technician may

want to interact with the same components of an apparatus

a scientist works on.

All information necessary for a task can be bundled into

a project. These are all the devices needed and the config-
uration with which they should be started, or into which

they should be reconfigured to perform the desired tasks.

Graphical visualizations of tasks can be added as scenes to
the project. They are used to show and edit the configuration

of devices and the connections between them. Repetitive

tasks reoccuring for users of a project may be programmed

as macros. If taking some data is the purpose of a project,

the data to be taken can be stored in the project as monitors.
The project itself, however, does not contain the data, which

is written to disk independently.

The projects are generally stored on a central server. This

way everything needed for a task is persisted, and enables

users to use their projects on different computers, and makes

the administration of Karabo installations easier, as projects

can be archived much simpler.

The project is the core concept of the Karabo GUI, and

most of the rest of this paper is a description of its compo-

nents. Figure 1 shows a screenshot of a running Karabo GUI

with all components.

LIVE NAVIGATION AND
CONFIGURATION

A Karabo device is run by a Karabo server, which is
software running on a computer. The device code to be run

is installed as plugins into those servers. The installation

and running of those servers is beyond the scope of Karabo,

but it is typically done with common server administration

software.

In the GUI, such an installation is shown as a tree, for each

computer the available servers are shown, and the available

plugins for each server. A user can thus see the entire Karbo

installation. From the GUI, the devices can be instantiated

from their device class, the code to be run for a device.
Before a device is even instantiated, its parameters are

already known to the device server and communicated to

the GUI. Thus a user can configure a device interactively by

filling out a form which is automatically generated from the

description of the device class. Those configurations can

be stored in the project. As the full live navigation tree of

a Karabo installation can grow large and confusing, those

stored configuration give a good overview of the devices

needed in a particular project.

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF153

User Interfaces and Tools

ISBN 978-3-95450-148-9

1063 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 1: Screenshot of the GUI. (a) The live Navigation, with computers, servers, device classes and devices. (b)

the Configuration of one device, automatically generated from its self-description, (c) a Scene with several device properties
shown, (d) the Project, (e) the message Logs and (f) Documentation.

GRAPHICAL VISUALIZATION
The properties and commands of devices can be visual-

ized in a graphical scene. This is done by simply dragging
the property from the device’s configuration view into the

central panel of the GUI, where those scenes are shown.

This is possible for both already running devices and device

classes which are known to the system. The latter can be

pre-configured and stored in the project, and their properties

can be part of a scene.

Within the scene, the user can choose the way the data

is shown. Besides variations of ways to show numbers on

dials and other numerial indicators, there are also advanced

widgets. As an example, numerical values can be shown in

a trendline widget, showing the time evolution of a property.

By simply moving the viewed time axis to the past, one

can even retrieve historical data from Karabo’s data logging

service.

Commands to a device are represented as push buttons.

They may show icons depending on the state of the device.

Once a scene has been designed, it is typically switched

from design to production mode, such that the widgets actu-

ally react to user input. This can always be switched back,

so that the design of the scene can be edited again. Scenes

may also be detached from the rest of the GUI. This way a

scene effectively looks like an independent application.

Scenes can also be used to design data processing work-

flows. Devices which produce or consume high-bandwidth

Figure 2: A simple workflow. In this workflow, a Detec-
tor device creates a data stream which is processed by the

Processor device group, whose results are sent to the Store
device. Samples of the data are copied to a Viewer device.

data can be dragged into the scene and are shown as boxes

with plugs representing the input or output data streams.

Those plugs are then connected by “wires”, as seen in Fig. 2.

For high-throughput data applications, when the devices

should run on many computers in parallel, one box in the

scene may also represent a large number of computers each

running the same device. Samples of the data can also be

shown in the GUI for inspection.

Technically, the file format of the scenes follows the SVG

standard with some extensions. This allows the user to copy

and paste graphical elements from an SVG editor into the

scene. While the graphical editing capabilities of the Karabo

WEPGF153 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1064C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools



from karabo import *

class Scan(Macro):
camera = RemoteDevice("camera1")
start = Float(description="Begin")
stop = Float(description="End")
steps = Int()
average_intensity = Float()

@Slot()
def execute(self):

"""Perform a camera scan"""
with getDevice("motor1") as m:

m.targetPosition = self.start
m.move()
waitUntil(lambda:

m.status == "stopped")
self.camera.takeImage()

Figure 3: A macro code example. An excerpt of a scan

macro showing the syntax of the macro language. Macros

are classes with executable slots that perform one task.

They can have arbitrary parameters, which serve as input

or output. Macros may continuously control devices with

RemoteDevice, or temporarily with getDevice.

GUI are limited, this feature allows for the creation of visu-

ally appealing scenes using external SVG editors.

MACROS
While devices in Karabo are also used to automate repeti-

tive tasks, they are often too cumbersome to be used, as they

need to be installed on servers by administrators. This is

where macros come into play: they are basically Karabo de-

vices which can be entered directly into the GUI and started

with a mouse click (they can also be started from the com-

mand line, but that is beyond the scope of this article).

The code is not executed in the GUI, as those are often

running on user machines with an unreliable internet con-

nection. Instead, they are sent to a central macro server and

executed there.

Macros are much more than just a list of commands to be

executed sequentially. They are written as a Python class,

where the methods of the class can be executed by the user.

They essentially behave like devices, so they can also be

configured, and their properties can be made editable in a

scene. A short example is shown in Fig. 3.

Finally, the only difference with a normal device is that

macros should be used for specific tasks which are relevant

in a particular context only. Everything generalizable should

be made into an actual device and maintained by computer

administrators.

LOGGING AND A CONSOLE
Karabo devices can broadcast messages that users may be

interested in within the distributed system. Those are shown

in a logging panel within the GUI, where those messages

can be sorted, searched and filtered.

There are many tasks which can be more easily done on

a command line than graphically. Therefore the GUI has a

console panel in which an IPython session can be started to

control Karabo. The same programmer’s interface as for the

macros is used, so that commands for a macro may be tested

on the command line.

TECHNICAL DETAILS
The GUI is written in Python 3.4, using PyQt4 for the

graphical output. Many of the widgets in the scene use

PyQwt5 and guiqwt. The same code can be run under Win-

dows, MacOS and Linux operating systems. Connection to

a Karabo installation is established via TCP with a dedicated

protocol. This way the GUI can also be used outside of the

protected network of a Karabo installation.

Like the rest of Karabo, the GUI is completely event

driven. The user cannot initiate any blocking operation.

When the GUI sends a user’s request to the network, instead

of waiting for a response the GUI continues to work normally

and will show results of the request when it arrives.

Projects are ZIP files, which contain the the data as XML

files and in case of the macros, as Python source files. This

allows users to inspect and change projects using other tools.

CONCLUSION
The Karabo distributed control system contains a single

graphical user interface which integrates everything to con-

trol and use an installation. The user interacts directly with

the live system. Via the self-description of the running de-

vice a user gets an immediate idea about its capabilities,

allowing for an intuitive use of the system.

REFERENCES
[1] B. C. Heisen, D. Boukhelef, S. Esenov, S. Hauf, I. Kozlova,

L. Maia, A. Parenti, J. Szuba, K. Weger, K. Wrona, C. Young-

man, “Karabo: an Integrated Software Framework Combining

Control, Data Management, and Scientific Computing Tasks”,

ICALEPCS2013, San Francisco, CA, USA 2013

[2] http://www.opengda.org

[3] Jan Hatje, M. Clausen, Ch. Gerke, M. Moeller, H. Rickens,

“Control System Studio (CSS)”, ICALEPCS07, Knoxville, TN,

USA, 2007

[4] E. Sombrowski, A. Petrosyan, K. Rehlich, P. Tege, “JDDD:

a Java DOOCS data display for the XFEL”, ICALEPCS07,

Knoxville, TN, USA 2007

[5] http://www.taurus-scada.org

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF153

User Interfaces and Tools

ISBN 978-3-95450-148-9

1065 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


