
UNIFYING ALL TANGO CONTROL SERVICES IN A CUSTOMIZABLE
GRAPHICAL USER INTERFACE

S. Rubio-Manrique, G. Cuní, D. Fernández-Carreiras,
C. Pascual-Izarra, D.Roldán, ALBA Synchrotron, Cerdanyola del Vallés, Spain

E. Al-Dmour, Max-IV, Lund, Sweden

Abstract
TANGO is a distributed Control System with an active

community of developers. The community features
multiple services like Archiving or Alarms with an
heterogeneous mix of technologies and look-and-feels
that must be integrated in the final user workflow. The
Viewer and Commander Control Application (VACCA)
was developed on top of Taurus to provide TANGO with
the user experience of a commercial SCADA, keeping the
advantages of open source. The Taurus GUI application
enables scientists to design their own live applications
using drag-and-drop from the widget catalog. The
VACCA User Interface provides a template mechanism
for synoptic-driven applications and extends the widget
catalog to interact with all the components of the control
system (Alarms, Archiving, Databases, Hosts
Administration). The elements of VACCA are described
in this paper, as well as its mechanisms to encapsulate all
services in a GUI for an specific subsystem (e.g.
Vacuum).

INTRODUCTION

Tango and Taurus
ALBA[1] Synchrotron is a third generation

Synchrotron lightsource in Barcelona, Europe, providing
synchrotron light since 2012 to users in its 7 beamlines,
with 2 more under construction. ALBA institute has been
an active member of the Tango Collaboration[2][3] since
the very beginning of its design and construction phase.
Tango is an open source object-oriented control system,
done in collaboration between ESRF and a growing
community of institutes and companies developing new
device servers and tools using either C++, Python or Java.

Our Human Machine Interfaces to the Tango Control
System are developed using Taurus[4][5], a framework
for creating both GUIs and command-line tools to interact
with scientific[6] and industrial control systems and
related data sources. Originally developed in-house at
ALBA, Taurus opened its development to the members of
the Tango community, becoming popular among the new
members of the Tango Collaboration. Some of the causes
of this success are the technologies involved: Qt,
Python[5] and its integration with SciPy[6], the popular
stack of scientific libraries for python.

Tango as SCADA
The concept of a Supervisory Control and Data

Acquisition system (SCADA) is largely used in both

industrial and scientific worlds to define a control system
that remotely controls large installations, using multiple
communication channels and providing an application to
control large processes distributed on many remote
equipments or stations

Tango fits perfectly within SCADA definition,
providing the communication channels and software tools
needed to manage large particle accelerators and other
facilities, along with additional control services such as
Archiving, Alarms and User Access. These services are
managed by a collection of applications developed either
by the core team or by other members of the community:
Jive for database configuration, Astor for control host
management, JDraw for Synoptics, Mambo for Archiving,
ATK/Taurus/QTango for GUI development, Sardana for
experiment control as well as several web toolkits and
multiple alternatives for Alarm systems[7] like PANIC[8].

Those applications provide a rich functionality and a
full-featured control system, but also a diverse collection
of look & feels and workflows that may be inconsistent
and interfere with user interaction (Fig.1). This paper will
address this issue providing a Taurus-based solution.

Figure 1: Tango look & feels: Taurus, Jive, Astor

State of the Art, Taurus and CSS
GUI consistency issues are not unique to Tango or to

open source control systems, as they may apply to any
collaborative project on which each member needs to tune
the generic tools to its own context.

At ALBA, these problems were mostly solved once
Taurus[5] became the default GUI framework for all our
applications, thus creating the opportunity to unify the
user interaction with the whole control system. Taurus
does not enforce control-system specific conventions but
is open instead to include multiple schemas and allows

WEPGF148 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1052C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

the final user to configure what must be shown and how
for all the catalog widgets: attribute and command forms,
synoptics, data source trees, plots and trends, image
viewers and the drag-and-drop application builder, the
TaurusGUI.

But, although Taurus provides a consistent UI
framework for all applications developed at ALBA, it still
leaves uncovered those control services that are either
completely Tango specific, not developed by ALBA or do
not fit well in the current model URI's of Taurus.

The same problem has been approached before by the
EPICS community, developing a common UI framework
to manage all the aspects of the control system. The
EPICS-based Control System Studio (CSS)[9][10],
provides a consistent GUI that integrates Forms (BOY),
Alarms (BEAST), Archiving (DataBrowser), Synoptics
and other community tools to deliver a single control
application that deals with all control system services.

Both TAURUS and CSS Studio are powerful GUI
toolkits with strong communities and full-featured
SCADA behind, Tango and Epics respectively. Being
both leading projects on its field, this paper presents the
implementation of a Taurus-based application as
consistent as CSS but with a higher versatility.

IMPLEMENTATION OF VACCA
VACCA was originally developed by the ALBA

Control Section (ACS) as the Vacuum Control
Application for Accelerators. It was designed as a
synoptic based application capable of summarizing the
state of hundreds of devices and provide navigation tools
to locate and plot any increase in pressure or temperature
readings from the vacuum chambers (typical usage and
target of commercial SCADA applications).

The development of VACCA has been an iterative
process:

• SynopticTree (2007) Java/ATK Based tool based on
JDraw and DeviceTree applications (ESRF) and
Mambo Archiving browser (Soleil). Used during the
commissioning of ALBA linac and transfer lines.

• VACCA/PySynopticTree (2009): First Python
release, using the TAU library and integrating
Astor/Jive functionality in a single tool as an Alarm
toolbar. It did heavy use of composer devices [11] to
deal with hundreds of devices.

• VACCA3.0 (2012): First Taurus release, developed
in collaboration with the ESRF. Used only for
beamlines and backwards incompatible with TAU.
Lacking the Astor/Jive/Alarms functionality but
providing the versatility of Taurus GUI.

• VACC4 (2015): First release to be deployed on both
small and large control systems. All previous features
are provided and all widgets become interconnected
with all Tango services.

VACCA and Taurus GUI
The current implementation of VACCA (fig. 2) is based

on the TaurusGUI framework[5]. This framework goes
beyond WYSIWYG and embeds the application design
within the application itself, empowering the user to
create new panels on running GUI just using drag & drop
from the Taurus catalog widget. Initial widgets may be
setup in a python module, while additional panels are
added on runtime and stored when saving the current
layouts as Perspectives: user specific views of the
application that record both look & feel and
configuration.

The VACCA core is just a TaurusGUI configuration
module, that builds a default Perspective with pre-loaded
widgets for Synoptic, Archiving Trends, Searches,
Properties and a Device Panel. VACCA supports widgets
that can be part of the Taurus Catalog, loaded from Vacca
or other PyTango modules (like PANIC[8]) or just added
by the developer on his custom setup file.

Figure 2: VACCA default perspective

The files that store VACCA customization at facility /
system / user levels are:

• vacca.config : the core of vacca python module, it
loads and interconnects the most basic widgets.

• vacca.default : overrides certain specific variables of
the configuration (e.g. institute logo, devices to be
hidden in searches, add/disable alarms widgets) and
expands the widget catalog with custom panels.

• [your_config.py] : optional python module passed as
command argument, used to do specific setups of
synoptics, panel models and filters for tree and
attributes widgets (e.g., show only BL vacuum).

• [~/.config/VACCA/.ini] : where user Perspectives,
Panels and Plot settings will be saved.

To a Consistent User Interface Catalog
As stated in the introduction, mixing tools coming from

different institutes and developer contexts results in
common inconsistencies like:

• Displaying different names for same information,
e.g. showing or not alias or labels for Tango devices.

• Tools forcing to use the conventions of an specific
institute (lower/upper case, spaces/dots in names).

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF148

User Interfaces and Tools

ISBN 978-3-95450-148-9

1053 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

• Not providing always the same behavior for user
actions (draggable text, context menus, keyboard
shortcuts, usage of user/expert levels).

• Too many solutions to the same problem (e.g., at
least 5 different syntax exist to evaluate string
formulas in Tango).

As Taurus is currently used for all user Interfaces at
ALBA , it solved all these issues except for Tango control
services: the Tango Database, Alarms, Archiving,
Snapshoting and Starter services.

Those services were originally managed at ALBA using
their own tools (Jive, Panic, Mambo, Bensikin, Astor), but
gradually replaced by python tools and widgets during the
commissioning of ALBA. This was possible thanks to the
device server nature of all Tango services, that physically
splits each service on client and server side and allows to
replace each element independently.

The next step was to embed these service specific
widgets in a generic Taurus application, a work done by
the VACCA python module. Although these widgets
already existed in Taurus (TaurusPropTable) or other
ALBA packages (PANIC.AlarmGUI) they have been
subclassed to interact between them in a consistent
application (Table 1).

Table 1: VACCA Widget Catalog

Widget Parent Features

VaccaTree TaurusDevTree Provides embedded
search bar, device info,
Start/Stop of devices,
attribute dragging and
device selection

VaccaPropTable TaurusPropTable Provides device property
edition and drag & drop

VaccaSynoptic taurus.qt.graphic Provides device selection,
graphic element
highlighting, context
menus, SVG synoptics

VaccaTrend TaurusTrend Archiving enabled by
default, draggable
legends

VaccaPanel TaurusDevicePanel Drag & drop of device
labels, custom icons for
each device class

VaccaBrowser ArchivingBrowser Drag & drop to device
panel and trends

AlarmGUI panic.gui New signals for
highlighting synoptics,
accept drag & drop on
search bar an editor

Other advantages of creating subclasses are:

• To provide a fix interface to each class, so existing
Perspectives can handle updates in the upper
libraries.

• To keep backwards compatibility with Taurus,
PANIC and other dependencies.

• To avoid polluting the upper libraries with ad-hoc
features only used within VACCA.

• To enable system-wide configuration, using Class
Properties in the Tango Database to customize the
appearance of every widget for a given Device Class.

Widget Interaction
All the default widgets loaded at VACCA startup

exploit an essential feature of TaurusGUI: the Shared
Data Manager (SDM). This mechanism allows the
creation of Reader / Writer channels within the
application to send information between widgets,
enabling translation elements to be inserted in the dialog
chain. This feature enables any PyQt widget to be used as
device / attribute selector as long as it provides a Qt signal
or slot to connect with.

Every widget instantiated from the VACCA catalog
(Table 1) is aware of the sources of information available
on its own application SDM, subscribing to the available
channels and sending its own signals to the crowd.
Widgets like Synoptic, Tree or Alarm GUI become
enabled as model selectors. VACCA widgets are not only
aware of signals at GUI creation time, but also when later
added from the catalog into a running application,
becoming instantly connected and interactive with the rest
of widgets (see Fig.3).

Figure 3: example of widget interactivity, selection of an
active alarm will highlight in red the related devices in the
Synoptic, where they can be selected for the Device panel
or dragged into the Taurus trend.

Drag & Drop
Interaction between widgets that have multiple models

have been implemented using drag & drop, a mechanism
that is inherent to Taurus and used as the standard method
to populate trends and attribute forms. VACCA extends
the same approach to any text that matches Taurus
models, enabling dragging from/to specific editors like
the Properties or Alarms widgets.

When already existing, the drag & drop methods have
been extended to use all available Mime types in Taurus:
Device, Attribute, Model and PlainText for alias/label. It
is used to reflect the multiple ways in which information
may be referred-to in taurus, allowing the widgets to
translate between the internal control naming

WEPGF148 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1054C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

(Device/Attribute) and the user-defined naming
(Alias/Label) in a way completely transparent to the user.

To provide a more generic solution when the full name
of a Device is not known, the Archiving Browser have
been added to VACCA to act as a universal search tool for
Taurus. Developed to correlate user naming between
databases it is both capable of searching on new data,
archived data or even devices already deleted. Thanks to
drag & drop capabilities it's possible to just drag the
known alias into the browser, expand the matching
attribute list and then drag the desired attribute to a trend,
the alarm editor or wherever is needed.

VACCA and the Control System Studio
Following the classification of CSS Compatibility

Levels wrote down by the CSS Studio team at DESY
[12], the Widgets in VACCA are integrated at "Advanced"
and "Integrated" levels within the framework. Taurus and
VACCA cover all together both the “Common Use” and
“Selected Use Components” of CSS, thus becoming a
full-featured control system navigator.

Performance of a Full-Control System GUI
Performance issues were faced by a GUI like VACCA

at the beginning of its design, as it had to be deployed to
manage hundred of devices during installation and
commissioning, having to deal with dead times and
timeouts, as well as avalanches of events in case of
sudden incidents that may saturate the whole application.

These issues have been solved using two different
approaches. In the case of timeouts, PyStateComposer
devices were used to summarize the information on
relevant attributes for each accelerator sector (typically 30
to 50 devices). This cached summaries (updated every 3
seconds) allowed to reduce the number of proxies to be
opened by the application, and allowed to be resilient
against hardware timeout by adding a layer in between
and a hook in SDM to translate composed attributes to its
real devices.

In case of high event rates coming from the Tango
Control System, the solution applied was the event
filtering mechanism of Taurus. Event filters can be
introduced both at Attribute and Widget level, and
executed on either python or PyQt threads.

Both setups, composers and event filtering, allow to
deal with most common performance issues. In both
cases, however, performance improvements were only
needed when managing very large systems and were done
just at vacca.default level, with no need to modify Taurus
library sources.

CONCLUSION
Open Source control systems may compete in the

Scientific world at the same level than renowned
commercial SCADAS; leveling or exceeding the
performance and features of those private systems.

But, in comparison, the integration of the different
subsystems sometimes lack of a unified look & feel due to
the multiple teams working on different institutions. This
situation is changing with the commitment of new
communities of developers that are working on improving
both user workflow and performance. VACCA, as a
Taurus tool developed originally to manage only vacuum
and protection systems, has evolved to get his own role as
control system navigator and central hub to interact with
all Tango services.

Future integration of additional control systems and
features in VACCA will be based in Taurus Schemas and
Plugins mechanisms still under development, trying to
keep backwards compatibility with existing Perspectives
as much as possible.

ACKNOWLEDGEMENT
Most of the early development was done in

collaboration with former ALBA members Ramón Suñé
and Tiago Coutinho. I must also thank Carlos Falcón,
Daniel Roldán (ALBA) and Antonio Milán (MaxIV,
Lund) for their work on testing and deploying VACCA on
different platforms and institutes. I would like also to
thank Andy Götz (ESRF) for its support to the project and
Eshraq Al-Dmour (MaxIV) for its role in the evolution of
the first releases of VACCA at ALBA.

REFERENCES
[1] ALBA website: http://www.albasynchrotron.es
[2] A.Götz, E.Taurel et al, “TANGO V8 – Another Turbo

Charged Major Release”, ICALEPCS'13, San
Francisco, USA (2013)

 [3] Tango website: http://www.tango- controls.org
 [4] Taurus website: http://www.taurus- scada.org
 [5] C. Pascual-Izarra et al., “Effortless Creation of

Control & Data Acquisition Graphical User
Interfaces with Taurus”, ICALEPCS'15, Melbourne,
Australia (2015).

[4] Z. Reszela et al. “Sardana – A Python Based Software
Package for Building Scientific Scada Applications”,
PcaPAC'14, Karlsruhe, Germany (2014)

[5] D. Fernandez-Carreiras et al., “ALBA, a Tango
Based Control System in Python”, ICALEPCS'09,
Kobe, Japan (2009)

[6] SciPy website, http://www.scipy.org
[7] S.Rubio et al., “Extending Alarm Handling in

Tango”, ICALEPCS'11, Grenoble, France (2011)
[8] S. Rubio-Manrique et al., “PANIC, a suite for

visualization, logging and notification of incidents”,
PCaPAC'14, Karlsruhe, Germany (2014)

[9] J.Hatje et al., "Control System Studio (CSS)",
ICALEPCS'07, Knoxville, USA, (2007)

[10] CSS website: http://controlsystemstudio.org/
[11] S.Rubio et al., “Dynamic Attributes and other

functional flexibilities of PyTango”, ICALEPCS'09,
Kobe, Japan (2009)

[12] CSS at Desy: http://css.desy.de/content/e760/e761

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF148

User Interfaces and Tools

ISBN 978-3-95450-148-9

1055 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

