
USING THE VAADIN WEB FRAMEWORK FOR DEVELOPING

RICH ACCELERATOR CONTROLS USER INTERFACES
*

Wenge Fu#, Kevin Brown, Ted D'Ottavio, Seth Nemesure, Enrique Schuhmacher

Brookhaven National Laboratory, Upton, NY 11793, USA

 Abstract
 Applications used for Collider-Accelerator Controls at

Brookhaven National Laboratory typically run as console

level programs on a Linux operating system. One

essential requirement for accelerator controls applications

is the bidirectional synchronized IO data communication.

Several web frameworks have made it possible to develop

web based Accelerator Controls applications that provide

all the features of console based user interface

applications. Web based applications give users flexibility

by providing an architecture independent domain for

running applications. Security is established by

restricting access to users within the local network.

Additionally, the web framework provides the opportunity

to develop mobile device applications that makes it

convenient for users to access information anywhere and

anytime. The Vaadin Java Web Framework is a tool kit

being used to develop client side web interfaces. Vaadin

provides Java developers a short learning curve overhead.

Most Java Technologies, including JavaEE and third party

packages work well within the Vaadin framework. This

paper explores the feasibility of using the Vaadin web

framework for developing UI applications for

Collider-Accelerator controls at Brookhaven National

Laboratory.

 INTRODUCTION

 "Vaadin Framework is a Java web application

development framework that is designed to make creation

and maintenance of high quality web-based user

interfaces easy"[1]. First released in 2009, the Vaadin

web application framework has been a fast growing API

in terms of popularity among web developers for its rich

functionality. The Vaadin framework has an advantage

over other web development technologies because it uses

the Java programming language which is more familiar to

the application development community.

 The Vaadin application framework provides two

programming models: server side (Java) and client side.

The client side framework is backed by the Google Web

Toolkit (GWT). Program code is written in Java and

resides on the server side. Server side program code

helps make web applications more secure. Vaadin has a

rich set of UI components. The server side and client side

communicates via HTTP (or TCP when websockets are

used) protocol and transfers data in JSON. The Vaadin

framework supports all major web browsers without

additional plugins[2] and works well with major IDEs.

This makes the web application coding and debugging

easier. In Vaadin, the look and feel of the web

application is controlled by CSS themes. This makes

web application GUI richer, and more configurable;

Vaadin is best used for designing single page web

applications which typically work like console level UI

applications.

VAADIN FOR ACCELERATOR CONTROL

APPLICATIONS

 Controls applications used in accelerator controls

systems have many common characteristics, such as:

• They mostly require fast live bidirectional

communications with many different systems

such as hardware controllers, database servers,

file servers, and other legend systems on

different platforms (Unix, Linux, Windows etc.);

• Requires fast UI and interactive responsiveness.

• Rich UI for control data visualization for single

or multiple GUIs.

 These features can be relatively easy to implement

with traditional languages such as C++ and Java. As

Vaadin uses the Java programming language, server side

java JDK (or JavaEE) APIs, third party APIs and jar

packages can be used directly. This makes Vaadin a

favorable choice when choosing a web application

framework.

 In a Vaadin web application, the server side programs

(written by developers) and client side code (generated

by Vaadin from server side code) have a common shared

state, which helps enhance UI responsiveness and overall

performance. For web based accelerator controls

applications, the UI design and GUI layout are relatively

easy to implement. It is critical for the client-server

bidirectional communication layer to be effectively

managed. Vaadin data push features make this kind of

bi-directional communication easy to setup.

 Vaadin push can be configured with Java annotations:

@Push(PushMode, Transport) in program code or with a

configuration file. There are three push modes:

• AUTOMATIC (default)

• MANUAL

• DISABLED

and 3 transport methods for communication in the

request/response cycles:
 Work supported by Brookhaven Science Associates,

LLC under Contract No. DE-SC0012704 with the U.S.
Department of Energy.

• LONG_POLLING

• STREAMING

• WEBSOCKET

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF135

User Interfaces and Tools

ISBN 978-3-95450-148-9

1025 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

 These push modes and transport methods can be either

set in the program or set in a configuration file (e.g.

web.xml).

 Since STREAMING is very similar to

LONG_POLLING and has been deprecated since V7.5.0,

this paper just focuses on the long_polling (the “fake”

push) and websocket (the real push) methods.

 Long polling is a process whereby clients send

requests to the server, and the server receive the requests,

but holds it for a set period of time. The response

happens when new data is available within the time

period. Meanwhile, the client keeps the connection open

and ready to receive data from the server. In this method,

although all requests are initiated from client side, it

effectively achieves a real time server push-like

bi-directional communication.

 Websocket, on the other hand, is a full duplex TCP

connection that is independent of the HTTP

request/response cycle. Once the connection is

established, it is a true real time bi-directional

communication.

 For accelerator controls applications, both methods

work well. But they do have some differences because of

the nature with which the communication is established.

The long_polling method is easy to setup and is supported

by most web browsers. However, there may be a short

delay in data transport, while requiring more server

resources such as memory. Websockets use dedicated
connections between server and clients, use fewer

resources and is capable of handling large amounts of

client/server connections. Figure 1 diagrams the

relationship between web application (client), Vaadin

application server and the back end accelerator control

system.

VAADIN CONTROL APPLICATION

EXAMPLES

 Vaadin is primarily designed for single-page web

applications which work like desktop applications. The

common life cycle for developing Vaadin web

applications include, designing and writing web

application UI Java code, tuning the look and feel of the

UI in CSS, deploying the application to a web container

(such as Glassfish server) and testing the application in a

web browser. Since the UI design is very similar to

strategies used with other languages, the focus of our tests

addressed synchronized IO communication with simple

GUIs and default CSS settings. We tested Vaadin with 3

different types of controls applications:

1. A single page application with no push (data

polling , HTTP).

2. A single page application with manual push in

long_polling. (HTTP)

3. A single application with automatic push in

websockets. (TCP)

 The Glassfish server v4.1 (and v4.0) are used as the

application servers.

Figure 1: Diagram of Vaadin for accelerator control application

WEPGF135 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1026C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

 In the first case, we converted a C++ based controls

application into a Vaadin web application. The

application's name is SystemViewer. The basic function

of this simple program is to display the current statuses of

all monitored control systems based on live data in a back

end database, and to highlight any system which may

have problems or need System Administrators' attention.

This program also displays the detailed system data for

any monitored systems, and is capable of launching

diagnostic tools (other GUI programs) with related

context directly from the web application. All features of

the C++ version were implemented in the Vaadin version.

This makes the program available anywhere within the

security network. In this case, all data are periodically

polled from the client side and the program works just as

fast and as reliable as the C++ version. In fact, the Vaadin

version includes more features such as allowing hiding

and showing columns in the GUI. Figure 2 shows the

GUI of the C++ vs the Vaadin web GUI.

 In the second and third cases, we converted a GUI

instance of a C++ application called PET (Parameter

Editing Tool) into a Vaadin web application and use the

data push approach with long_polling and websockets,

respectively. In these two cases, the programs connect to

control devices and display (or change) the live setting or

measurement values of these devices. Two of the devices

have data updating at various frequencies ranging from

1Hz to 1000Hz. In both cases, we found that the Vaadin

web application works well when the data frequency

<100Hz. When the frequency > 100Hz, the GUI becomes

sluggish. On a graphical display, a frequency >10 Hz is

usually not necessary. In practice, this kind of high

frequency push may not be reasonable for GUI

applications. Figure 3 shows this application in C++ vs

Vaadin version, Tests concluded that, the performance

difference between data push with long_polling and

websockets are negligible. Both long_polling and

websockets can be used in controls application

development. It is recommended that websocket based

push is used for long running web applications(>24

hours). Long_polling is supported by most of existing

systems as it is an HTTP based "fake" push technology.

Websocket is a relatively new technology, and requires

new versions of application server software. Websockets

are the recommended push technology for web based

control applications.

 In our Control System, we have successfully developed

a DashBoard web application system using the Vaadin

technology. It provides a flexible system for quickly

setting up web based controls applications with a rich

GUI to monitor accelerator operations.

 Testing has uncovered some common problems with

data push in Vaadin:

• After an application is running for some period

of time, a "UIDetachedException" error occurs

causing the web application to stop updating IO

data. When this happens, re-loading page

doesn't always help. The application server

Figure 2 SystemViewer application: C++ (top) vs Vaadin (bottom)

requires a restart. This problem may be caused

by user session time outs.

• The Web UI seems unable to handle high

frequency IO data with data update rates >

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF135

User Interfaces and Tools

ISBN 978-3-95450-148-9

1027 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

target applications which requires high

frequency data updates.

• The IO connections between front end

application and Vaadin application server, and

the IO connections between Vaadin application

server and the rest of control system have to be

properly controlled and coordinated, otherwise,

the control system may be over burdened.

 Some of the problems can be resolved by using proper

system settings and program logic controls; Others may

require software updates. For example, after upgrading

from Glassfish 4.0 to v4.1, the UIDetachedException

problem disappeared.

 It is noticed that, with Vaadin, we can develop web

applications without explicit knowledge of HTML and

Javascript. However, since all client side web applications

are essentially based on HTML, Javascript and CSS,

familiarity with HTML, Javascript and CSS will help

developers make web applications more flexible.

SUMMARY

 The Vaadin web application frame work offers web
application developers rich sets of UI components[3],

add-ons, Java APIs, and powerful console level

application like features. It makes accelerator control

web application development simpler for Java developers

without the prerequisite of HTML and Javascript

knowledge. The key aspects of accelerator control

applications include a fast and responsive bi-directional

IO connection and UI interactions on web GUIs. The

Vaadin web framework does a good job in this regard

with server push features that support long_polling or

websockets. The testing of accelerator control web

applications developed with Vaadin technology shows

that, it is easy to convert console level control

applications to HTML5 supported web platforms, and the

web applications can be just as robust as the OS console

level applications. As Vaadin technology and application

server technology evolves, this web application

framework will become more reliable. These

technologies will aid in making web based accelerator

control application development easy, powerful and more

convenient to end users. The testing work with Vaadin

showed some problems that needed attention during

application development. Avoiding these pitfalls will help

to develop robust and high performance web applications.

REFERENCES

[1] Book of Vaadin: https://vaadin.com/book/

[2] Wikipedia: https://en.wikipedia.org/wiki/Vaadin

[3] Vaadin: http://demo.vaadin.com/sampler/

Figure 3: specMan: C++ (top) vs Vaadin (bottom)

~100Hz. Developers need to keep this in mind

when deciding if Vaadin is good for the type of

WEPGF135 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1028C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

