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Abstract
The  KAT-7  and  MeerKAT  radio  telescope  control

systems  (www.ska.ac.za)  are  built  on  a  rich  Python
architecture.  At  its  core,  we  use  KATCP (Karoo  Array
Telescope  Communications  Protocol),  a  text-based
protocol that has served the projects very well. KATCP is
supported  by  every  device  and  connected  software
component  in  the  system.  However,  its  original
implementation relied on threads to support asynchronous
operations,  and  this  has  sometimes  complicated  the
evolution  of  the  software.  Since  MeerKAT  (with  64
dishes) will be much larger and more complex than KAT-
7, the Control and Monitoring (CAM) team investigated
some alternatives to classical threading. We have adopted
Tornado  (www.tornadoweb.org)  as  the  asynchronous
engine  for  KATCP.  Tornado,  popular  for  Web
applications,  is  built  on  a  robust  and  very  efficient
coroutine  paradigm  that  in  turn  is  based  on  Python's
generators. Co-routines avoid the complexity of thread re-
entrancy  and  lifetime management,  resulting  in  cleaner
and more maintainable user code.

This poster will describe our migration to a Tornado co-
routine architecture, highlighting the benefits and some of
the pitfalls and implementation challenges we have met.

KATCP IN THE KAT-7 AND MEERKAT
SYSTEMS

KATCP  [1,2]  is  a  simple  ASCII  communication
protocol layered on top of TCP/IP.

It  has  been  developed  as  a  part  of  the  Karoo  Array
Telescope (KAT) and MeerKAT projects and used at SKA
South Africa for the monitoring and control of hardware
devices. In this role it has been very successful and the
specification is currently at Revision 5.

The  original  KATCP  implementation  provided  a
blocking client and a non-blocking CallbackClient.

Base message types are Request,  Reply and Inform -
the latter are sent asynchronously by a server to provide
out-of-band data or (in some cases) to provide a way of
segmenting the results of a previous request.

KATCP additionally  defines  a  software  Sensor  type.
Sensors are created with names and data types such as
float,  string  etc.  Dynamically  a  sensor  may  acquire  a
value and a status which it communicates to its registered
listeners  via  callbacks.  A  listening  client  may  set  a
strategy on the sensor which causes it to push its value
and status to the listener periodically or on certain events,

such as a value change. An ad-hoc query mechanism is
also available. 

KATCP messages,  sensors, servers and clients are the
building-blocks of the KAT-7 and MeerKAT Control and
Monitoring systems. These robust abstractions support the
next layer of the architecture, which comprises software
proxies  to  abstract  access  to  real  hardware,  and
components that partition the work of system startup and
shutdown,  scheduling,  observation  control  and
monitoring. 

LIMITATIONS OF THREADS
In  earlier  implementations  of  KATCP,  the  inherent

concurrency of  real-time processes  was modelled  using
software thread. Threads provide the illusion of parallel
execution within a single processor  core by performing
pre-emptive task switches at  the system level.  This has
benefits for processing efficiency since the system need
never be idle - while some thread of control is awaiting an
event,  another  thread  can  be  executing.  This  can  be
especially  useful  in  networked  systems  where  many
cycles would otherwise be wasted waiting for I/O events. 

However  threads  also  have  some  well-known
drawbacks. Each thread has its own execution context and
this means that threading is resource-intensive, so that the
number of active threads must be limited. Perhaps even
more  important  is  the  complexity  they  introduce  into
software  design.  Since  any  thread  of  control  may  be
interrupted or resumed at essentially arbitrary moments,
software  becomes  ‘non-linear’  and  the  designer  must
carefully guard against  inadvertent  corruption of shared
resources.  Numerous  best-practices  and  software
constructs  exist  to  alleviate  these  problems,  but  all
contribute  to  the  complexity  and  cost  of  software
development and maintenance.

Finally  the  Python  language,  which  has  proved
immensely valuable in the development of our systems,
implements  a  Global  Interpreter  Lock  (GIL)  which
essentially disables threading for compute-bound tasks on
a single processor.

MIGRATION TO TORNADO

Like many teams facing these challenges, we have been
interested  in  the  developments  in  coroutine-based
concurrency frameworks. Coroutines are a generalisation
of  subroutines  based  on  co-operative  multitasking,  in
contrast  to  the  pre-emptive  model  used  by  threads
Coroutines  differ  from subroutines  in  allowing multiple
entry-points (and multiple entries per entry-point) within
the body of  a  routine,  with the preservation  of  the full
execution context at that point. Because task-switching is

______________________________________________

#charles@ska.ac.za
ǂ bxaia@ska.ac.za

USE OF TORNADO IN KAT-7 AND MeeRKAT FRAMEWORK 

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF118

Software Technology Evolution

ISBN 978-3-95450-148-9

977 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



cooperative, the developer can tell by inspecting the code
where a context switch may occur.  This makes it  much
easier to ensure and verify the determinism of the code.
Task switches are ‘lightweight’ because only the normal
stack mechanism is required to save and restore context.
All coroutines in a process typically run within a single
execution thread.

Coroutines are an important tool to support lightweight
concurrency,  but  for  a  large  system  one  also  needs  a
scheduling mechanism so that independent subtasks can
execute  without  mutual  awareness.  This  is  achieved
through a coroutine framework. After some research we
chose the open-source Tornado framework.

Tornado[3]  is  a  Python  web  framework  and
asynchronous networking library, and offers non-blocking
I/O and concurrency support via coroutines. It is capable
of scaling to tens of thousands of open connections and
concurrent  handlers.  In  addition  it  provides  a  scalable,
non-blocking  Web  server  and  application  framework.
Although Web development is not our primary focus, the
MeerKAT GUI is web-based, and HTTP servers are also
proving useful in other areas. Tornado allows for multiple
long-lived client connections with minimal overhead.

The MeerKAT GUI displays have been completely re-
engineered using Tornado and other modern technologies
such as AngularJS. The MeerKAT GUI displays real-time
data from the back-end components. Using the Tornado
web server and websockets, tests have shown that it can
comfortably  handle  multiple,  concurrent,  long-lived
connections  from components  as  well  as  human  users.
Additional libraries and adapters have eased integration,
such  as  toredis  (a  Redis  client  on  top  of  Tornado),
sockjs_tornado (WebSocket emulation), etc.

KATCP Implementation using Tornado
An objective of our adoption of Tornado was to replace

the use of threading throughout the codebase. Because the
original  KATCP  client  and  server  base  classes  were
thread-based,  this  was  the natural  starting-point  for  the
implementation. 

The  Tornado  scheduler  is  called  the  ‘ioloop’.  Every
component and activity requiring scheduling must have a
reference to the ioloop, This reference may be obtained
from  the  global  execution  context,  or  passed  in  as  a
parameter. The latter method allows for a ‘local’ ioloop to
be used in specific cases.

A particular challenge of the CAM implementation was
our large legacy codebase, which has many instances of
operations  expecting  synchronous  (blocking)  responses.
The Tornado ioloop mechanism, however, is non-blocking
and  returns  Futures  -  placeholders  for  the  result  of
possibly  incomplete  operations.  Obtaining  the  result  of
the operation that returns a Future requires the use of the
yield keyword within a coroutine.  On encountering this
construct,  the  ioloop  engine  suspends  the  current
operation  and  continues  with  the  execution  of  other

coroutines until the result of the Future is available. Then
the  original  stack  context  is  restored  and  the  function
continues with the result it has obtained. 

KATCP  proxies  and  other  top-level  components
typically  run  within  their  own  threads  or  processes  to
minimize I/O contention. To facilitate the transition from
thread-based  to  coroutine-based  concurrency,  a
compatibility  layer  was  added  to KATCP. Some of  the
classes  in  this  compatibility  layer  are  briefly  described
below.

The IOLoopManager helper class provides a facade for
an ioloop instance that may be shared across components,
or running in a private thread. This class exists to abstract
this  difference  and  to  guard  against  inadvertent  thread
contention. 

Even  when  a  section  of  the  codebase  has  been
converted to coroutines, we often need a way to return a
synchronous  result  for  clients that  expect  this,  and that
may be running within their own arbitrary threads. This
has  been  achieved  by  implementing  Python  code
decorators  within  our  custom  compatibility  layer:  the
_make_threadsafe() wrapper ensures that arbitrary code is
executed  within  the  ioloop’s  own  thread,  while  the
_make_threadsafe_blocking() decorator  additionally
guarantees that the Future’s result will be resolved before
it  is  returned  to  the  blocking  caller.  A  DeviceClient
instance  may  call  enable_thread_safety() before  it  is
started, in order to apply the relevant decorators to all its
methods.  The  whole  instance  thus  becomes  implicitly
threadsafe  and/or  blocking,  and  hence  suitable  for
integration with legacy code.

A feature of KATCP from its origins was introspection;
a client can query any device on the network and obtain a
specification  of  its  interface  (requests  and sensors).  On
connection. the client builds a local representation of the
server’s  interface,  and  proxies  those  capabilities  using
Python’s dynamic binding. This feature is implemented in
the InspectingClient class. The InspectingClient monitors
its own connection and synchronisation state and attempts
to re-initialise itself if the connection is lost or the server
indicates  an  interface  change.  The  Inspecting  Client  in
turn may be included in a higher-level container, where it
can be commanded and interrogated by an interactive user
or a script.

Figure 1 shows a conceptual view of the CAM software
layers involved in the  Tornado integration.
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Figure 1: CAM Software Layers.

CONCLUSION
Our  adoption  of  Tornado  has  brought  a  number  of

benefits as well as some challenges.

Benefits
Tornado in CAM has begun to deliver on its promise of

efficient multitasking. This is especially evident in areas
of  our  codebase  that  have  been  fully  converted  to  the
Tornado idiom, such as the sensor-archiving component
KatStore and the web-based GUI.  Tornado has  its  own
testing framework (built on the standard Python unittest)
and this is helping us to eliminate the thread-management
challenges that used to hamper our testing. Code at the
application level is greatly simplified by the elimination
of the complex locking and concurrency control that were
necessary for safe threading. This in turn can only benefit
reliability and maintainability in the long run.

Challenges
Coroutines  and  the  event  loop  were  an  unfamiliar

paradigm  to  most  of  the  team.  It  takes  time  to  fully
understand  coroutines  and futures,  and to  recognise  the
ways  in  which  existing  code  must  change  to
accommodate them. Despite the compatibility tools added
to  KATCP,  a  significant  effort  has  been  required  to
integrate  the  changes  with  the  rest  of  the  system,  and
many  unit  tests  initially  failed  because  of  explicit  or
implicit  threading  dependencies.  Some components  and
some tests have still to be converted. 

Debugging can be difficult because of the many layers
of  ‘scaffolding’ code  introduced  by  the  framework;  of
course any concurrent model has similar problems. Better
tools may help here.
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