

S. Veseli, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract
As the number of sites deploying and adopting EPICS

Version 4 grows, so does the need to support PV Access
from multiple languages. Especially important are the
widely used scripting languages that tend to reduce both
software development time and the learning curve for
new users. In this paper we describe PvaPy, a Python API
for the EPICS PV Access protocol and its accompanying
structured data API. Rather than implementing the
protocol itself in Python, PvaPy wraps the existing EPICS
Version 4 C++ libraries using the Boost.Python
framework. This approach allows us to benefit from the
existing code base and functionality, and to significantly
reduce the Python API development effort. PvaPy objects
are based on Python dictionaries and provide users with
the ability to access even the most complex of PV Data
structures in a relatively straightforward way. Its
interfaces are easy to use, and include support for
advanced EPICS Version 4 features such as
implementation of client and server Remote Procedure
Calls (RPC).

INTRODUCTION
EPICS Version 4 (EPICS4) [1] extends Version 3 [2]

with features like support for complex data structures and
service oriented architecture, optimized data transfers, as
well as support for high level data and image processing.
It also comes with a comprehensive set of C++ and Java
APIs. However, what has been missing until recently is
support for scripting languages. PvaPy aims to fill that
gap by providing a Python API for the EPICS PV Access
(PVA) protocol.

Rather than providing a direct Python implementation
of the PVA protocol, PvaPy wraps EPICS4 C++ code
using the Boost.Python [3] framework, a C++ library that
enables seamless interoperability between C++ and
Python. The main advantage of this approach is that it
allows us to build on the existing EPICS4 code base and
functionality, which significantly reduces PvaPy
development effort.

BUILD PROCESS
Prerequisites for building PvaPy from sources [4]

include the following:
 EPICS Base (v3.14.12.x, or v3.15.x) [5]
 EPICS4 C++ release (v4.4.0 or v4.5.0) [6]
 Python development header files/libraries (v2.6.x or

v2.7.x) [7]
 Boost (v1.41.0 or later); installation must include the

Boost.Python library [3]
 Standard set of GNU development tools (gcc, make,

autoconf, etc.) [8]

 Sphinx (Python Documentation Generator) [9]; this
is an optional package, generating documentation at
build time is not essential.

Except for EPICS Base and the EPICS4 C++ release, all
software dependencies listed above are typically included
in most Linux operating system (OS) distributions. PvaPy
has not been built or tested on Microsoft Windows.

PvaPy utilizes the standard EPICS build infrastructure
[10]. However, unlike most EPICS modules, it also offers
the possibility of configuring the software build
automatically, using the GNU Autoconf [11] and a set of
M4 [12] macros. Automated configuration determines
compiler flags appropriate for the given operating system,
and for the specific versions of Boost and Python that are
installed on the build machine. Configuration scripts also
determine the PvaPy API version that is suitable for the
particular version of EPICS4 release, as well as prepare
user environment setup scripts. User setup scripts modify
PYTHONPATH environment variable so that PvaPy’s
“pvaccess” module can be imported within Python scripts
or for interactive usage.

SOFTWARE FEATURES
PvaPy provides C++ code which calls the EPICS4 C++

libraries and defines a set of high-level classes for data
objects, exceptions, and client/server interfaces. Those
classes and their interfaces are exposed to users as the
Python “pvaccess” module using the Boost.Python
framework. PvaPy also defines a number of low-level
utility and helper classes that are either required by
EPICS4 APIs, or handle things like conversion between
various Python and EPICS4 data structures. Note that the
new high-level PVA Client C++ module [13] (available as
part of the EPICS4 v4.5.0 release) greatly simplifies
EPICS4 client interfaces and significantly reduces the
number of internal classes that are implemented in PvaPy.

PvaPy Objects
EPICS4 C++ data types and modelling APIs are part of

the PVData C++ package [14]. In PvaPy, the base class
for all PV data types is PvObject, which represents a
generic PV Structure. PvObject is initialized with a
Python dictionary of PV introspection data, a set of
key/value pairs describing the underlying PV structure in
terms of field names and their types. The dictionary key is
a string (the PV field name), and the value can be one of:

 PVTYPE: a scalar type, any of BOOLEAN, BYTE,
UBYTE, SHORT, USHORT, INT, UINT, LONG,
ULONG, FLOAT, DOUBLE, or STRING

 [PVTYPE]: a single element list, representing a
scalar array

 * Argonne National Laboratory's work was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under contract DE-AC02-06CH11357.

PvaPy: PYTHON API FOR EPICS PV ACCESS*

WEPGF116 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

970C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

 {key:value,…}: a dictionary, representing a structure
 [{key:value,…}]: a single element list containing a

dictionary, representing a structure array
 (): an empty tuple, representing variant union
 [()]: a single element list containing an empty tuple,

representing variant union array
 ({key:value,…},): a single element tuple holding a

dictionary, representing a restricted union
 [({key:value,…},)]: a single element list containing a

single element tuple of a dictionary, representing a
restricted union array

In this way, we can easily describe even the most
complex PV structures using standard Python data types
and structures like dictionaries, lists and tuples. For
example, a PV structure containing a structure array and a
restricted union would be initialized as in Figure 1 below:

pv = PvObject({
 'sArray':[{'i':INT,'d':DOUBLE}],
 'u':({'f':FLOAT,'s':STRING},)
})

Figure 1: Initializing PvObject consisting of a structure
array and a restricted union.

Field values for PvObject instances can be set using a
dictionary keyed on the field names:

pv.set({
 'sArray':[
 {'i':1,'d':1.1},
 {'i':2,'d':2.2}
]
})

Figure 2: Setting PvObject’s value via a Python
dictionary.

The corresponding “get()” method returns a Python
dictionary of all the PvObject’s field values. Another way
of manipulating and accessing a PvObject’s fields is to
use setters and getters that correspond to different field
types. For example, setting a structure array can be done
through the “setStructureArray()” method:

pv.setStructureArray(
 'sArray',
 [
 {'i':1,'d':1.1},
 {'i':2,'d':2.2}
]
)

Figure 3: Setting a specified structure array field.

Even though the PvObject class can represent any PV

Data structure, PvaPy also comes with a number of
specialized classes that wrap some of the standard PV
Data types. Those include classes for various scalar types
(PvByte, PvInt, etc.) and scalar arrays (PvScalarArray),
unions (PvUnion), timestamps (PvTimeStamp), and

alarms (PvAlarm). Note that wrapper classes for the
EPICS4 Normative Types (NT) [15] have not yet been
fully implemented.

Channel Class
PvaPy’s Channel class provides the Python interface

for communicating with PV Access channels, as well as
for their monitoring. It is worth noting that this class also
supports Channel Access (the EPICS Version 3 protocol)
as well as PV Access. As of the EPICS4 release v4.5.0,
the Channel class implementation is based on the PVA
Client C++ package [13].

Users have the ability to retrieve and set process
variable values through a Channel’s “get()” and “put()”
methods. The “get()” method returns a PvObject
representing the current value for the given process
variable. The “put()” method accepts either a PvObject or
a standard Python data type as input for setting the
process variable. For example, when “doubleArray” is the
name of a PV channel for a structure containing an array
of doubles, the following Python statements will initialize
the Channel object and set its PV value:

c = Channel('doubleArray')
c.put([1.0,2.0,3.0])

Figure 4: Initializing the “doubleArray” Channel object
and setting its PV value via a Python list.

The Channel class’ monitoring functionality allows

users to subscribe to PV value changes and process them
with a Python function that takes a PvObject as an
argument and has no return value. The code in Figure 5
monitors the above “doubleArray” channel, and prints the
sum of the array’s values after every change:

def sum(pv):
 s = 0
 for d in pv.get()['value']:
 s += d
 print s
c.subscribe('sum',sum)
c.startMonitor()

Figure 5: Monitoring PV channels.

Note that one can subscribe to PV value changes with an
arbitrary number of monitor processing functions.

RPC Server and Client
The RpcServer class is used for hosting one or more

PVA Remote Procedure Call (RPC) services. Users define
an RPC processing function (which may be a Python class
member), and register it with an RpcServer instance. The
RPC processing function takes a client request PvObject
as input, and returns a PvObject containing the processed
result. Figure 6 below illustrates code for defining and
registering a simple RPC service that returns sum of two
numbers provided in an RPC request:

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF116

Software Technology Evolution

ISBN 978-3-95450-148-9

971 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

def sum(pvRequest):
 a = pvRequest.getInt('a')
 b = pvRequest.getInt('b')
 return PvInt(a+b)
srv = RpcServer()
srv.registerService('sum',sum)
srv.listen()

Figure 6: A simple RPC service returning the sum of two
numbers from the client’s request.

A single RpcServer class instance can host multiple

RPC services, each accessible on their own PVA channel
whose name is given in the “registerService()” call. The
RpcServer can be started in its own thread by invoking
the “startListener()” method instead of the blocking
“listen()” function call shown above. This is typically
used for multi-threaded programs, or for testing and
debugging in Python’s interactive mode.

RpcClient is a client class for PVA RPC services. Users
initialize an RpcClient object giving the service’s channel
name, prepare a PV request object, and then invoke the
service as in the following example:

c = RpcClient('sum')
request = PvObject({'a':INT,'b':INT})
request.set({'a':1,'b':2})
sum = c.invoke(request)

Figure 7: An RPC client for the “sum” service.

The result returned by the above call will be a PvObject
containing the sum of the two numbers in the request.

Exceptions
PvaPy’s “pvaccess” module exposes a number of

exception classes that may be raised by the API under
different error conditions. Examples of these are
FieldNotFound, InvalidDataType, InvalidRequest, etc.
Note that all PvaPy’s exceptions derive from the base
PvaException class, and that the exception hierarchy is
preserved from C++ to Python using custom exception
translator code and Boost.Python’s translator registration
mechanism (see [3] for examples).

Documentation
All exposed PvaPy classes and methods have been

documented in the code, relying on Boost.Python’s
support for user-defined docstrings [3]. API reference
documentation can be generated from the docstrings in
various formats at build time, using the Sphinx
documentation generator. Alternatively, users can access
the official documentation [4] generated by the EPICS4
automated builds [16].

FUTURE PLANS
The most recent PvaPy version is bundled with EPICS4

release v4.5.0 [6]. Although it is fairly functional, there
are quite a few desired features, development process

improvements, and performance enhancements planned
for the future:

 Implementation of wrapper classes for all Normative
Types [15]; the current software only supports a few
NT wrapper types

 Full support for PVA channels; at the moment
operations like “putGet()” and “getPut()” are not
supported

 Support for Python 3; at the moment PvaPy only
supports recent Python 2 versions (2.6.x or 2.7.x)

 Support for NumPy arrays [17]
 Channel monitor performance and usability

enhancements; at this time, processing monitor data
on multiple CPU cores requires a significant amount
of user-written code

 Test framework integration and test suite
development; at the moment all testing is done
manually

 PVA Server implementation
Note that the above list is not exhaustive and only
includes some of the most important planned features.

CONCLUSION
PvaPy is the EPICS4 Python API for PV Access. It

relies on the underlying EPICS4 C++ libraries and
Boost.Python framework for interfacing Python and C++.

In addition to providing Python tools for EPICS4
application developers, one of PvaPy’s goals is to help
promote EPICS4 usage by making it more accessible to
new users. As the examples presented in this paper
illustrate, PvaPy interfaces have been designed with the
end user in mind: to be as simple, flexible and intuitive as
possible, while still retaining all capabilities and features
provided by the PVA protocol.

ACKNOWLEDGMENT
I would like to thank A.N. Johnson for his work on
ensuring that PvaPy’s build conforms to EPICS
standards, M. Kraimer and M. Davidsaver for their
work on prototyping support for PV unions, M.
Kraimer for the development of pvaClientCPP package,
K. Vodopivec for his early feedback and suggestions,
as well as to R. Lange and D. Hickin for their work on
automated builds and preparing software release. I
would also like to thank N.D. Arnold and the entire
EPICS 4 working group for their support and
encouragements during PvaPy development.

REFERENCES
[1] G. White et al., “Recent Advancements and

Deployments of EPICS Version 4”, this conference
proceedings; EPICS4 website: http://epics-
pvdata.sourceforge.net;

[2] EPICS website: http://www.aps.anl.gov/epics
[3] Boost website: http://www.boost.org; Documentation

for the Boost.Python module can be found at
http://www.boost.org/doc/libs/release/libs/python

WEPGF116 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

972C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

[4] Similar to other EPICS Version 4 modules, PvaPy
project is hosted in GitHub: https://github.com/epics-
base/pvaPy; Documentation corresponding to the
most recent code can be found at http://epics-
pvdata.sourceforge.net/docbuild/pvaPy/tip/pvaccess.
html

[5] EPICS Base releases can be downloaded from
http://www.aps.anl.gov/epics/download/base/index.p
hp

[6] EPICS4 production releases can be found at
http://sourceforge.net/projects/epics-pvdata/files

[7] Python website: http://www.python.org
[8] GNU website: http://www.gnu.org
[9] Sphinx website: http://sphinx-doc.org
[10] M.R. Kraimer et al., “EPICS Application

Developer’s Manual”, Chapter 4. For EPICS Base
3.15.2, the manual can be downloaded from
http://www.aps.anl.gov/epics/base/R3-15/2-
docs/AppDevGuide

[11] GNU Autoconf project website:
http://www.gnu.org/software/autoconf/autoconf.html

[12] GNU M4 project website:
http://www.gnu.org/software/m4/m4.html

[13] PVA Client C++ project website (GitHub):
https://github.com/epics-base/pvaClientCPP

[14] EPICS4 PV Data C++ v4.5.0 reference document:
http://epics-
pvdata.sourceforge.net/docbuild/pvDataCPP/4.5.0/do
cumentation/pvDataCPP.html

[15] EPICS4 Normative Types specification document:
http://epics-
pvdata.sourceforge.net/alpha/normativeTypes/normat
iveTypes.html

[16] EPICS4 CloudBees Jenkins Build Server website:
https://openepics.ci.cloudbees.com; APS Jenkins
website: https://jenkins.aps.anl.gov;

[17] NumPy is Python package for scientific computing;
http://www.numpy.org

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF116

Software Technology Evolution

ISBN 978-3-95450-148-9

973 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

