
L. Pivetta, A.I. Bogani, R. Passuello

Elettra Sincrotrone Trieste, Trieste, Italy

Abstract

During the last fifteen years several PowerPC-based

VME single board computers, belonging to the

MVMExxxx family, have been used for the control

system front-end computers at Elettra Sincrotrone Trieste.

Moreover, a low cost embedded board has been recently

adopted to fulfill the control requirements of distributed

instrumentation. These facts lead to the necessity of

managing several releases of the operating system, kernel

and libraries, and finally to the decision of adopting a

comprehensive unified approach based on a common

codebase: the Yocto Project. Based on Yocto Project, a

control system oriented GNU/Linux distribution called

Flop has been created. The complete management of the

software chain, the ease of upgrading or downgrading

complete systems, the centralized management and the

platform-independent deployment of the user software are

the main features of Flop.

INTRODUCTION

Since the last decades, technology evolution and compo-

nent obsolescence are driving a renewal that involves also

particle accelerator control system platforms. Even indus-

trial grade products well-known for the long lifetime sup-

port, such as VME, suffer these issues. Moreover, the evo-

lution of application software, especially when dealing with

new compiler features or when requiring new system library

functionalities, often involves an update of the operating

system software. Several models of PowerPC-based VME

single board computers are in use at Elettra, running differ-

ent distributions/releases of the GNU/Linux operating sys-

tem [1–3]. Furthermore, the BeagleBone, a low cost embed-

ded board based on the ARM microprocessor, has been re-

cently introduced, as well as a low-power high-performance

INTEL Bay Trail Celeron based Soc platform to interface a

specific instrument via USB.

To address all these platforms in an effective and straight-

forward way, ensuring the consistency of the operating sys-

tem, the device drivers and the application software, a com-

prehensive approach is desirable.

GNU/LINUX

The usual approach to GNU/Linux consists in the instal-

lation of one of the many available distributions. Yet, most

of them do not support all the required architectures and in-

struction sets and, very often, rely on a generic instruction

set to achieve improved compatibility at the expense of the

performance.

Using distinct distributions for different architectures,

which is the current scenario at Elettra, entails a number of

possible issues, among which different releases of the sys-

tem libraries, of the system initialization, e.g System V init

rather than upstart or systemd, and of the filesystem hier-

archy. Furthermore, diverse bugfix policy is often in place,

making the system and platform adimistration quite onerous

in the medium/long term.

Sticking to a specific GNU/Linux distribution release,

conversely, exposes to the risk of outdated software, es-

pecially concerning the kernel, the system libraries and

the compiler. Also, recent hardware is usually poorly sup-

ported, or even unsupported, by old distributions without a

big effort in back-porting.

THE YOCTO PROJECT

The Yocto Project [4] is an open source collaboration,

aimed at providing templates, tools and methods to create

custom GNU/Linux based systems for embedded hardware,

regardless of the architecture. Established in 2010, it in-

volves many hardware manufacturers, open-source operat-

ing system vendors and electronics companies. The Yocto

Project provides a complete embedded Linux development

environment, with tools, metadata and documentation for

free, including core system component recipes provided by

the OpenEmbedded project. Specific platform support is

provided by the Board Support Package (BSP), for which a

standard format has been developed. In addition to the very

effective command line tools, the Yocto Project provides an

Eclipse IDE plugin and the Hob graphical user interface.

FLOP

Starting from the Yocto Project release 1.8, a control sys-

tem oriented GNU/Linux distribution named Flop has been

created. The current Flop release is 0.5, based on the 3.14

Linux kernel, glibc 2.21, and systemd 219; the compiler in

use is gcc release 4.9.2. The TANGO Controls framework

is also included, featuring OmniORB 4.1.6, ZeroMQ 3.2.4

and TANGO 8.1.2.

Flop ecipes

In the Yocto Project, the key mechanism that allows to

define a specific platform support is referenced as recipe.

Each recipe specifies the procedures to select and compile

software packages. Recipes can be grouped in layers, and

multiple layers can be specified to introduce dependencies.

Recipes, usually written as shell scripts o Python scripts,

make use of common variables that can be accessed by

R

FLOP: CUSTOMIZING YOCTO PROJECT FOR MVMExxxx POWERPC
AND BEAGLEBONE ARM

WEPGF112 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

958C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

different recipes or from configuration files. These fea-

tures make possible to specify and build systems enabling

only very specific functionalities of the required subsys-

tems, whereas the standard distribution package based ap-

proach usually enables all the functionalities. Thus, use-

less, redundant or unwanted features can be easily excluded,

improving the system reliability and, as a side effect, de-

creasing the footprint. As an example, the recipe written

for TANGO is listed below.

DESCRIPTION = "TANGO is an object oriented distributed control \
system using CORBA (synchronous and asynchronous \

communication) and zeromq (event based communication)"
HOMEPAGE = "http://www.tango-controls.org"
LICENSE = "LGPLv3+"

LIC_FILES_CHKSUM = "file://COPYING.LESSER; \
md5=6a6a8e020838b23406c81b19c1d46df6"

PR = "r0"

DEPENDS += "zlib bash omniorb zeromq"
RDEPENDS_${PN} += "bash"

S = "${WORKDIR}/tango-${PV}"

SRC_URI = "http://download.sourceforge.net/project/tango-cs/
tango-${PV}c.tar.gz"

SRC_URI[md5sum] = "3dbcc2cf34f8c9395ee72f4ee5ae05dc"

SRC_URI[sha256sum] = "0149e797e5745b1dd8d5d39260889b6da31c8
4c75c272372255ae8ca3507a116"

inherit autotools pkgconfig systemd

EXTRA_OECONF_append = " --disable-jpegmmx --disable-static \
--disable-java --without-java --disable-dbserver \

--disable-dbcreate --enable-stdcxx11=no"
CXXFLAGS_prepend = "-std=gnu++98 "

SYSTEMD_SERVICE_${PN} = "starter.service stopper.service"

do_configure_prepend() {
(cd ${S}; ${S}/bootstrap)

}

do_install_append() {

install -d ${D}${systemd_unitdir}/system
install -m 0644 ${WORKDIR}/starter.service \

${D}${systemd_unitdir}/system
install -m 0644 ${WORKDIR}/stopper.service \

${D}${systemd_unitdir}/system

}

In addition to defining some descriptive keywords, such as

DESCRIPTION or HOMEPAGE, the recipe contains the check-

sums of the specified licence and source files as well as the

dependencies toward other tools or libraries. Extra configu-

ration directives for the autotools and the compiler are also

specified.

Everything that needs to be included in an embedded sys-

tem distribution based on the Yocto Project, and therefore

in Flop, have to be specified in a recipe. Accordingly, the

whole system, built on the basis of the recipes, is univocally

defined and characterized by the release number.

Multiple latform Support

The first advantage of the Yocto Project approach is

that Flop support includes all the embedded systems and

microprocessor architectures used at Elettra: four gener-

ations of PowerPC based VME single board computers

manufactured by Artesyn, formerly Emerson/Motorola, the

MVME5110, MVME6100, MVME7100 and MVME2500,

as well as the ARM based BeagleBone embedded system

and the INTEL Bay Tray based Jetway JBC311U93 Soc.

Flop provides specific platform support for mathematical

coprocessors, vector accelerators, such as the Altivec en-

gine or the SSE4, and optimized intruction sets. The above

is especially true for the MVME2500 single board computer

P2010 e500 v2 core QorIQ processor, which single and dou-

ble precision embedded scalar floating point unit is some-

how different from the classic floating point unit and uses

the integer register file.

The availability of board support packages (BSP) de-

serves to be analyzed. Each BSP usually supports a very

specific kernel release and, even within a single family of

boards made by one manufacturer, often applies to a differ-

ent kernel release for different board models. This makes

the development and the management of kernel code, such

as device drivers or kernel modules, more complicated. To

solve this problem a back/forward porting of the BSP to the

current release of Flop has been done, with the request to

the community to include it in the mainline. Similarly, the

required device drivers have been ported to the current re-

lease of Flop. As an example, some changes to the existing

Tsi148 PCI-VME bridge device driver, aimed at adding a

more transparent and flexible support whenever several dif-

ferent slave VME boards are installed, have been proposed.

The use of different platforms and different distributions

sometimes leads to system software and application soft-

ware fragmentation. The centralized system software man-

agement allows to keep the software aligned and up to date

for all the platforms. Flop, being based on the Yocto Project,

does not make use of a package based approach. On the con-

trary, all the required components are listed on a recipe, and

the whole system compiled from source based on it. This

single source approach, although sacrifices the flexibility of

the package based software, guarantees the consistency of

Flop with respect to all the architectures, as well as the very

same patchlevel.

Development ools

Interesting embedded boards exist which are low re-

sources and low computing power. Moreover old boards

are in use at Elettra, such as the MVME5110, which can

be considered low performance with respect to modern sys-

tems. Native mode development on these platforms, mean-

ing that the tools and the compiler run on the target system,

is often quite slow and sometimes limited, or prevented, by

the shortage in memory and the inappropriate storage de-

vices. The Yocto Project allows to generate the required

cross-compiler tools for the host architecture, typically fast

and cheap INTEL-based workstations or servers. Ubuntu

14.04 LTS, running on a modern INTEL-based 64 bit hard-

ware, has been selected as the operating system for the host

platform for Flop. The repetitive tasks connected to soft-

ware development are thereforemade on powerfulmultiuser

systems with plenty of memory and fast storage, with an

P

T

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF112

Software Technology Evolution

ISBN 978-3-95450-148-9

959 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

explicit benefit for the developer convenience and time sav-

ings.

Moreover, some special subsystems may require very

specific tools that are often not included in standard

GNU/Linux distributions. An example is the pro-

grammable real-time unit and industrial communication

subsystem (PRU-ICSS) of the BeagleBone. This engine

consists of dual 32-bit RISC cores with memory, interrupt

controller and internal peripherals. In addition to the sup-

ported real-time industrial protocols, such as EtherCAT [5],

PROFIBUS and PROFINET [6], EtherNet/IP [7], Ethernet

Powerlink [8] and SERCOS III [9], the PRU subsystem has

been exploited for some special applications at Elettra Sin-

crotrone Trieste. These include driving piezo-electric ac-

tuated mirrors in real-time for the Fermi seed laser trajec-

tory feedbacks and interfacing the new power supply con-

trollers for the Elettra storage ring [10]. Therefore, the PRU

C compiler has been included in the Flop SDK, ensuring the

straightforward availability as well as the versioning of the

tool with Flop.

On-board Storage

Several partitions are foreseen for the on-board storage;

as described hereafter, the current release of Flop requires

at least four partitions: one for the boot loader, two for the

system image, one for data when in standalone operation

without networking.

One of the key features of Flop, as appears from the con-

siderations in the previous sections, is the mandatory ver-

sioning which applies to the whole SDK and, of course, to

the target platform support. Strict versioning means that

systems with the same version must be identical. This as-

pect can be a limitation whenever a large number of hosts is

involved and the application software, even limited to con-

figuration files, is subject to change quite often.

To overcome this restriction the root filesystem of Flop

relies on two physical partitions and on the overlay filesys-

tem [11]. The overlayfs allows one, usually read-write, di-

rectory tree to be layered onto another read-only directory

tree. All modifications go to the upper, writable layer. In

Flop, the "lower" directory tree is used for the read-only

system image. The "upper", used read-write, stores the

changes with respect to the versioned image and is mounted

over the previous one exploiting the overlayfs.

Flop also provides a simple and reliable mechanism for

system update, with rollback capabilities. Two partitions

are foreseen for the Flop system image, one of which is ac-

tive. A major update can be performed, on a running sys-

tem, writing the new Flop image to the inactive partition and

reconfiguring the system to boot from that one. On next re-

boot the boot loader will load the updated system. It’s worth

noting that the specific application and configuration data,

stored in the read-write partition by means of the overlayfs,

are preserved because not affected by the update procedure.

Should it emerge any issue with the updated system, the roll-

back to the previous image is straightaway and just implies

the reset of the boot parameter and the system reboot. The

local storage layout and the interactions with the network

share, described in the next section, are shown in Fig. 1 for

the network operating mode case.

A Partition

GNU/Linux system
ACTIVE system image

INACTIVE (network mode selected)

Data Partition

Automatically
mounted read−only

Fall−back on local
data partition in case
of network shortage

Automatically
mounted read−only
or read−write

L
 o

 c
 a

 l

s
t

o
 r

 a
 g

 e

(o
n−

bo
ar

d
fla

sh
 /

S
D

 c
ar

d
/ H

D
)

BLS Partition
Boot loader support (U−Boot)
Device Tree
Boot and Operating mode configuration
Not mounted (manual mount only)

N
 e

 t
 w

 o
 r

 k

s
h

 a
 r

 e

ACTIVE
Application binaries and configurations

B Partition

INACTIVE

possibly shared between many hosts

Remote update via rsync

Application binaries and configurations

Network

Reset

Figure 1: Local and network storage layout and interactions.

Standalone/Network Operation

Flop has been designed to support both network and

network-less, or standalone, operation, where a network en-

abled setup is not limited to the configuration of the IP ad-

dress but also includes DHCP, NFS, NIS, NTP, SSH, HTTP

and FTP support. Both operating modes have to be ad-

dressed in a simple and effective way, minimizing the com-

plexity from the user point of view. Configuration files, bi-

nary executables and, possibly, kernel modules, especially

when related to specific user applications, can reside in dif-

ferent locations of the filesystem, depending on the selected

operating mode. The solution found provides an additional

partition to store all the configuration files, required by the

boot loader, in order to specify and select the operating

mode. If the standalone mode is selected, Flop makes use

of a local partition for the data storage; if, conversely, the

network mode is selected a part of the filesystem can be

shared over a network. Currently, the NFS is not compat-

ible with the overlay mechanism in use; the most suitable

network protocol is, at the moment, 9P [12].

When in network mode, essential services, such as IP

configutation, DNS, routing and NTP, can be configured via

DHCP. In addition, an approach based on DHCP custom op-

tions is under evaluation to add the support for a number of

WEPGF112 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

960C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

parameters, not included in the DHCP specification, that

will allow a complete centralized management of the sys-

tem configurations. Precision Time Protocol (PTP) support

is also available and, even not included by default, can be

exploited if requested.

Moreover, not excluding the possible adoption of ad-

vanced remote management systems such as Puppet or Chef,

an HTTP/FTP based interface, aimed at system configura-

tion, is under development. Whenever required, a light http

server can be deployed to provide a simple web page expos-

ing the main system configuration parameters and, possibly,

any configuration for specific user applications.

CONCLUSION

The increasing number of different embedded systems in

use at Elettra, as well as the need of comprehensive system

software updates, lead to the need of a unified approach

for embedded platform management. Based on the Yocto

Project, Flop, a control system oriented GNU/Linux distri-

bution hase been designed. Flop fulfils many of the require-

ments of a modern embedded operating system, provides a

user friendly development environment and rationalizes the

support for different platforms and architectures, simplify-

ing the administration and ensuring the consistency.

REFERENCES

[1] D. Bulfone et al., “New front-end computers based on Linux-

RTAI and PPC”, ICALEPCS’03, Gyeongiu, Korea (2003).

[2] C. Scafuri, L. Pivetta, “The evolution of the Elettra control

system”, ICALEPCS’07, Knoxville, USA (2007).

[3] M. Lonza et al, “The control system of the FERMI@Elettra

free electon laser”, ICALEPCS’09, Kobe, Japan (2009).

[4] Yocto Project website:

https://www.yoctoproject.org

[5] EtherCAT Technology Group website:

https://www.ethercat.org

[6] PROFIBUS and PROFINET website:

http://www.profibus.com

[7] EtherNet/IP website:

https://www.odva.org/Home/ODVATECHNOLOGIES/

EtherNetIP.aspx

[8] Ethernet Powerlink website:

http://www.ethernet-powerlink.org

[9] SERCOS III website:

http://www.sercos.com/technology/sercos3.htm

[10] S. Cleva, L. Pivetta, P. Sigalotti, “BeagleBone for embedded

control system applications”, ICALEPCS’13, San Francisco,

USA (2013).

[11] Linux kernel overlay filesystem:

https://www.kernel.org/doc/Documentation/

filesystems/overlayfs.txt

[12] 9P website:

http://9p.cat-v.org

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF112

Software Technology Evolution

ISBN 978-3-95450-148-9

961 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

