
SOLVING THE SYNCHRONIZATION PROBLEM IN MULTI-CORE 
EMBEDDED REAL-TIME SYSTEMS 

F. Hoguin, S. Deghaye, CERN, Geneva, Switzerland 

Abstract 
Multi-core CPUs have become the standard in 

embedded real-time systems. In such systems, where 
several tasks run simultaneously, developers can no 
longer rely on high priority tasks blocking low priority 
tasks. In typical control systems, low priority tasks are 
dedicated to receiving settings from the control room, and 
high priority real-time tasks, triggered by external events, 
control the underlying hardware based on these settings. 
Settings' correctness is of paramount importance and they 
must be modified atomically from a real-time task point 
of view. This is not feasible in multi-core environments 
using classic double-buffer approaches, mainly because 
real-time tasks can overlap, preventing buffer swaps. 
Other common synchronization solutions involving 
locking critical sections introduce unpredictable jitter on 
real-time tasks, which is not acceptable in CERN's control 
system. We present a lock-free, wait-free solution to this 
problem based on a triple buffer, guaranteeing atomicity 
no matter the number of concurrent tasks. The only 
drawback is potential synchronization delay on 
contention. This solution has been implemented and 
tested in CERN's real-time C++ framework. 

FROM SINGLE-THREADED TO MULTI-
THREADED EMBEDDED SYSTEMS 

In typical control systems, accelerators settings are 
modified either manually by operators using graphical 
user interfaces or by high-level systems computing 
hardware settings from high-level values. These settings 
are then sent by the high-level applications to the 
computers in charge of the hardware real-time control. 
This control is done by real-time tasks in a limited time 
frame following an external trigger. A real-time task is 
nothing more than a piece of code executed with real-time 
priority. These tasks typically perform computations 
based on settings and drive the hardware with the values 
obtained. Hardware settings can be interdependent and 
modifications must be applied in a single operation. The 
real-time tasks must work with consistent sets of settings; 
from their point of view, settings must be modified 
atomically. 

In single core embedded systems, developers can rely 
on the determinism of a real-time scheduler to guarantee 
consistency of settings with a simple double buffer 
system; one for active values (accessed by real-time 
tasks) and another one for pending values i.e. just 
modified values not yet accessible to real-time tasks. 
When the modification is done, the set of pending values 
is consistent and buffers may be swapped. A low priority 
task swaps pointers to the buffers atomically; the pending 
buffer becomes active, and vice versa. This is guaranteed 

to be safe provided no real-time task is ever in a waiting 
state in the middle of its execution, ensuring that the 
buffer swapping task can never be executed while a real-
time task is being executed. 

As multi-core embedded systems become the norm, 
such assumptions cannot be made anymore. At CERN, 
most of the control system embedded systems use 2-core 
processors. In such setups, the buffer swapping task can 
be executed concurrently to a real-time task. As a result, 
swapping pending and active buffers without further 
checks could lead to a real-time task reading inconsistent 
settings. An example is shown in table 1. 

 
Table 1: Example of Naive Buffer Swap with Multi-core 
CPU 

Real-time task Buffer 
swapping 

thread 

Buffer 1 Buffer 2 

Reads voltage 
=> 200V 

Swap 
triggered… 

V = 200,  
A = 100 

V = 10,  
A = 1000 

Busy 
computing… 

Swaps 
buffers 

V = 200,  
A = 100 

V = 10,  
A = 1000 

Reads current 
=> 1000A 

 V = 200,  
A = 100 

V = 10,  
A = 1000 

Tells power 
supply:  

200V, 1000A 

 V = 200,  
A = 100 

V = 10,  
A = 1000 

EXPLORED AND ABANDONED 
SOLUTIONS 

In order to solve this problem, several solutions were 
explored. The goal was to implement an algorithm that 
fulfils the following requirements: 

1. The solution shall be real-time compliant (in 
particular, no dynamic memory allocation is allowed). 

2.  Real-time tasks shall read consistent setting values 
throughout their execution. 

3.  Time interval between a trigger and the execution of 
the corresponding real-time task shall be constant and 
below 5 milliseconds (a jitter of 10% is acceptable). 

4.  Pending setting values shall be made available to 
real-time tasks within a reasonable time frame.  

Snapshot of the Setting Values 
A possible solution is to make a snapshot of the setting 

values just as a real-time task is about to start. This 
snapshot is private to that execution of the task. While 
this would work, it is not real-time compliant as memory 
would be dynamically allocated to copy the setting 
values. Even a fixed size memory pool could be 
exhausted given enough simultaneous real-time tasks. 
Also, the jitter between the trigger and the task execution 
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depends on the size of the setting values. This solution 
fails requirements #1 and #3.  

Reader-Writer Lock Mechanism 
In this implementation, real-time tasks acquire a reader 

lock just before starting their execution. Swapping 
settings buffers is done when the corresponding writer 
lock can be acquired. While this solution looks like it 
could work, there are unavoidable cases where a real-time 
task would be delayed beyond acceptable limits. This is 
typically the case when two real-time tasks overlap (see 
table 2 for an example). 

 
Table 2: Reader-writer Example Preventing RT Task 
Execution 

Real-time task 
A 

Real-time task B Buffer 
swapping task 

Starts. Acquires 
reader mutex. 

  

Executing  Swap required. 
On hold 

waiting for 
writer mutex. 

Executing Starts. Blocks 
trying to acquire 

reader mutex 
because of 

“Buffer 
Swapping” task. 

On hold 

Executing Blocked On hold 
Finishes. 

Releases reader 
mutex. 

Blocked Acquires witer 
mutex and 

swaps buffers. 
 Acquires reader 

mutex. 
Releases writer 

mutex. 
 
In this situation, task B is blocked for as long as task A 

is executing, which is not acceptable as it fails 
requirement #3. To avoid real-time tasks blocking, 
readers could have priority over writers. But in this case, 
overlapping real-time tasks would prevent settings from 
ever being updated; the buffer swapping task would never 
acquire the writer mutex as, at any time, one of RTA or 
RTB would hold a reader mutex. This fails requirement 
#4. 

A LOCK-FREE, WAIT-FREE 
SYNCHRONIZATION SOLUTION 

Requirement #3 means that real-time tasks should 
never block and never wait. We demonstrated earlier that 
these requirements cannot be satisfied with a traditional 
pointer swapping implementation, and that using any 
form of locking before executing a real-time task is 
impossible. 

We introduce a solution that, by the use of an additional 
setting values buffer, guarantees settings consistency 
without using any locking mechanism in real-time tasks. 
Furthermore, we guarantee that the delay between an 

event and the execution of the corresponding real-time 
task is fixed (requirement #3) by ensuring a fixed set of 
operations is executed in-between. 

Instead of using an active settings buffer and a pending 
settings buffer, we use a reference settings buffer and two 
real-time settings buffers. The reference buffer contains 
the latest setting values, as modified by operators. This 
buffer is never accessed by real-time tasks. The real-time 
settings buffers are copies of the reference buffer at a 
certain point in time. From now on, we’ll refer to the real-
time buffers as buffer A and buffer B. They can be in one 
of the following four states: 

•  Current: the buffer can safely be accessed and 
contains the current settings. 

•  Obsolete: the buffer can safely be accessed and 
contains old settings. 

•  Modifiable: the buffer is not in use and cannot be 
accessed. It is waiting for an update of setting 
values. 

•  Updating: new setting values are being copied in the 
buffer. 

 
Buffers A and B are always in different but related 

states. Transition between states for a single buffer is 
presented in Fig. 1. 

 

 

Figure 1 Buffer's states. 

Overview of the Behaviour 
The following simplified description focuses on buffer 

A; buffer B follows the same pattern. Relations between 
buffer states are described in depth in the next section. 

When a real-time task reacts to an event, it becomes a 
reader of the Current buffer (e.g. buffer A). Whenever 
newer values are available in the other buffer (buffer B), 
buffer A becomes Obsolete. Buffer A is guaranteed to 
have its readers count eventually reduced to 0 since it 
cannot receive new readers. As soon as buffer A has no 
longer any readers, it becomes Modifiable. At some point 
in time, new settings will be available and will be copied 
from the reference buffer to buffer A; it goes to the state 
Updating. When the copy is done, buffer A becomes 
Current at the same time as buffer B becomes Obsolete, 
coming back to the initial state. Operations available on 
buffers depending on their state are listed in table 3. 
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Table 3: Buffer Access Rights 
 Can be 

accessed by 
readers 

Can get 
new 
readers 

Can be 
modified 

Current Yes Yes No 
Obsolete Yes No No 
Modifiable No No Yes 
Updating No No Yes 

States Transitions 
A state machine representing this algorithm is presented 

in Fig. 2.  

 

Figure 2: Complete two-buffer state machine. 

At start-up, the content of the reference buffer is copied to 
both real-time buffers A and B, and buffer A is in Current 
state while buffer B is in Modifiable state. Whenever the 
reference buffer is modified and the modification 
operation committed, a synchronization is triggered 
(“Sync triggered” transition). Since buffer B is in the 
Modifiable state, setting values are copied by a low 
priority task (the buffer synchronizer) from the reference 
buffer to buffer B; the latter goes to the state Updating. If 
no buffer is Modifiable, the copy operation is put on hold. 
To ensure consistency of settings, the buffer synchronizer 
holds a reader lock on the reference buffer during the 
copy. This time interval depends on the number of 
modified settings, their size and the bandwidth of the 
computer memory. On modern systems, it is typically 
very short, between a few microseconds to a few 
milliseconds. During that period of time, the reference 
buffer cannot be modified and the threads writing the 
settings coming from the high-level application are 
blocked. This delay is acceptable as the transfer of 
settings uses the Ethernet network, which is not real-time. 
In addition, the buffer synchronizer keeps a list of just-
copied settings, the “settings to replicate”, which will be 
useful when the next synchronization occurs. Once the 
copy is done (“Sync done” transition), buffer A becomes 
Obsolete and buffer B becomes Current. This latter 
transition must be atomic to ensure that at any time, one 
and only one buffer is in the Current state. When buffer A 
has no readers any more, it becomes Modifiable (“A 

readers = 0” transition). The next time a synchronization 
will be triggered (second “Sync triggered” transition), the 
modified settings will be copied from the reference buffer 
to buffer A. This time though, this will not be sufficient 
as, at this point, buffer A is not up-to-date with respect to 
the settings that were copied earlier to buffer B. The 
buffer synchronizer needs to use the “settings to replicate” 
and copy them from buffer B to buffer A. When the copy 
is done (second “Sync done” transition), buffer A and 
buffer B atomically change state, going to Current and 
Obsolete respectively. When buffer B has no readers any 
more (“B readers = 0” transition), it goes back to the state 
Modifiable, which is the initial state. 

IMPLEMENTATION 
This algorithm has been implemented in CERN’s real-

time C++ framework. We present details of our 
implementation. 

 
Atomic Operations 

Some operations need to be carried out atomically to 
ensure proper functioning of the algorithm. The list of 
required atomic operations is as follows: 

•  Fetch and increment or increment and fetch on 32 
bits (can be reduced to 8 bits) 

•  Decrement on 32 bits (can be reduced to 8 bits) 
•  Compare and swap on a pointer (optional, for 

validation purposes only, can be replaced by a write 
operation) 

 
As explained earlier, it is required to always have one 

and only one buffer in the Current state. This is achieved 
by using a pointer to the Current buffer, whose value can 
be changed atomically (supported by all modern CPU 
architectures [1][2]). Instead of a simple write, an atomic 
compare and swap is used in our implementation to 
ensure that the pointer value is as expected before 
modifying it; this is for validation purposes only and, in 
production, only the write is required. 

When a new reader requests access to the Current 
buffer, its readers count is incremented, and its index is 
retrieved and assigned to the reader. Since the Current 
buffer pointer can be changed at any time, this sequence 
(increment and read) needs to be atomic as well. Our 
implementation uses a structure that can be modified 
atomically. It contains the buffer index in the most 
significant part and the number of readers in the least 
significant part. We use 8 bits for the buffer index and 24 
bits for the reader index (see Fig. 3). This structure allows 
us to use a “fetch and increment” that will atomically 
increment the number of readers and read the buffer 
index. This primitive is again supported by all modern 
CPU architectures [3][4]. Note that on architectures with 
limited resources, the number of bits can be reduced from 
8 to 1 and from 24 to 7 bits respectively, while still 
allowing a maximum of 128 readers. 
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Figure 3: Internal structure for buffer management. 

 
When a reader no longer needs access to a buffer, its 

readers count must be decremented. This also needs to be 
atomic because other readers may simultaneously modify 
this count. However, in this case, there is no need to 
retrieve the buffer index as it was retrieved when 
requesting access to the buffer. Therefore, an atomic 
decrement is sufficient and, again, this operation is 
supported by all modern architectures [3][4]. 

Our implementation uses GCC atomic built-ins 
__sync_fetch_and_add, __sync_fetch_and_sub, and 
__sync_bool_compare_and_swap [5], requiring no hand-
written assembly at all. Such intrinsics exist on other 
systems [6] and, as of C++11, in the language itself [7]. 

 
Synchronization Trigger 

The synchronization of setting values is triggered when 
the reference buffer contains new consistent setting 
values. However, the synchronization can only happen if 
a real-time buffer is in the Modifiable state. Figure 2 
shows that a real-time buffer is in the Modifiable state if it 
is not the Current buffer and it has no readers. 

The buffer synchronizer thread (BST) ensures that a 
synchronization happens as soon as possible by waiting 
for the Obsolete buffer to go to Modifiable. Once a 
Modifiable buffer is available, the BST checks 
continuously whether a synchronization is needed. This is 
achieved in several steps. First, the BST deduces from the 
Current buffer pointer which buffer is Obsolete. The 
Current buffer pointer is guaranteed not to change since 
the BST is the only thread that can change it. To avoid a 
busy wait when the number of readers of the Obsolete 
buffer is greater than 0, we use a condition variable which 
is signalled by readers when a buffer’s readers count 
reaches 0. A synchronization request is indicated to the 
BST via a boolean. Again, an expensive busy wait is 
avoided thanks to a condition variable which is signalled 
whenever the boolean is set to true. 

CONCLUSION 
This synchronization algorithm fulfils all the 

requirements: 
•  Real-time compliant (no memory allocation) 
•  Consistent setting values (real-time buffers cannot 

be modified while they have readers) 
•  Constant jitter between event and task execution 

thanks to a fixed flow of execution and an O(1) 
algorithm 

•  Settings made available as soon as possible 

Nevertheless, implementing the solution is not free and 
two major drawbacks have to be mentioned. First, there is 
an obvious additional memory consumption; a third 
buffer is required compared to the simpler double-buffer 
approach. In modern systems, this is probably not an issue 
as the amount of settings is typically small compared to 
the amount of available RAM. The second drawback is 
the lack of control on the delay between the 
synchronization request and the actual availability of the 
new settings to the real-time tasks. As the synchronization 
cannot occur before all the Obsolete buffer’s readers have 
completed their execution, a slow real-time task can delay 
the synchronization. Therefore, it is possible to have new 
real-time tasks executions not using the latest settings. In 
our case, this is not a problem as we consider the sending 
of new settings a slow and non-deterministic operation. If 
this limitation is incompatible with the system to be 
controlled, the possible evolution based on the usage of 
additional real-time buffers is detailed in the next section. 

 
Possible Evolution 

Our implementation uses two real-time buffers, but in 
practice, for busy real-time application with many tasks 
and frequent changes of settings, one can use as many 
buffers as the available memory allows. This would 
reduce the likelihood not to have any Modifiable buffer 
on synchronization request and therefore reduce 
significantly the delay between settings modification and 
settings availability. The management of Modifiable 
buffers would need to be adapted so that the first 
available Modifiable buffer can receive a copy of the 
newest setting values. In practice, two real-time buffers 
should be sufficient for most if not all real-time 
applications. 
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