
SOLVING THE SYNCHRONIZATION PROBLEM IN MULTI-CORE
EMBEDDED REAL-TIME SYSTEMS

F. Hoguin, S. Deghaye, CERN, Geneva, Switzerland

Abstract
Multi-core CPUs have become the standard in

embedded real-time systems. In such systems, where
several tasks run simultaneously, developers can no
longer rely on high priority tasks blocking low priority
tasks. In typical control systems, low priority tasks are
dedicated to receiving settings from the control room, and
high priority real-time tasks, triggered by external events,
control the underlying hardware based on these settings.
Settings' correctness is of paramount importance and they
must be modified atomically from a real-time task point
of view. This is not feasible in multi-core environments
using classic double-buffer approaches, mainly because
real-time tasks can overlap, preventing buffer swaps.
Other common synchronization solutions involving
locking critical sections introduce unpredictable jitter on
real-time tasks, which is not acceptable in CERN's control
system. We present a lock-free, wait-free solution to this
problem based on a triple buffer, guaranteeing atomicity
no matter the number of concurrent tasks. The only
drawback is potential synchronization delay on
contention. This solution has been implemented and
tested in CERN's real-time C++ framework.

FROM SINGLE-THREADED TO MULTI-
THREADED EMBEDDED SYSTEMS

In typical control systems, accelerators settings are
modified either manually by operators using graphical
user interfaces or by high-level systems computing
hardware settings from high-level values. These settings
are then sent by the high-level applications to the
computers in charge of the hardware real-time control.
This control is done by real-time tasks in a limited time
frame following an external trigger. A real-time task is
nothing more than a piece of code executed with real-time
priority. These tasks typically perform computations
based on settings and drive the hardware with the values
obtained. Hardware settings can be interdependent and
modifications must be applied in a single operation. The
real-time tasks must work with consistent sets of settings;
from their point of view, settings must be modified
atomically.

In single core embedded systems, developers can rely
on the determinism of a real-time scheduler to guarantee
consistency of settings with a simple double buffer
system; one for active values (accessed by real-time
tasks) and another one for pending values i.e. just
modified values not yet accessible to real-time tasks.
When the modification is done, the set of pending values
is consistent and buffers may be swapped. A low priority
task swaps pointers to the buffers atomically; the pending
buffer becomes active, and vice versa. This is guaranteed

to be safe provided no real-time task is ever in a waiting
state in the middle of its execution, ensuring that the
buffer swapping task can never be executed while a real-
time task is being executed.

As multi-core embedded systems become the norm,
such assumptions cannot be made anymore. At CERN,
most of the control system embedded systems use 2-core
processors. In such setups, the buffer swapping task can
be executed concurrently to a real-time task. As a result,
swapping pending and active buffers without further
checks could lead to a real-time task reading inconsistent
settings. An example is shown in table 1.

Table 1: Example of Naive Buffer Swap with Multi-core
CPU

Real-time task Buffer
swapping

thread

Buffer 1 Buffer 2

Reads voltage
=> 200V

Swap
triggered…

V = 200,
A = 100

V = 10,
A = 1000

Busy
computing…

Swaps
buffers

V = 200,
A = 100

V = 10,
A = 1000

Reads current
=> 1000A

 V = 200,
A = 100

V = 10,
A = 1000

Tells power
supply:

200V, 1000A

 V = 200,
A = 100

V = 10,
A = 1000

EXPLORED AND ABANDONED
SOLUTIONS

In order to solve this problem, several solutions were
explored. The goal was to implement an algorithm that
fulfils the following requirements:

1. The solution shall be real-time compliant (in
particular, no dynamic memory allocation is allowed).

2. Real-time tasks shall read consistent setting values
throughout their execution.

3. Time interval between a trigger and the execution of
the corresponding real-time task shall be constant and
below 5 milliseconds (a jitter of 10% is acceptable).

4. Pending setting values shall be made available to
real-time tasks within a reasonable time frame.

Snapshot of the Setting Values
A possible solution is to make a snapshot of the setting

values just as a real-time task is about to start. This
snapshot is private to that execution of the task. While
this would work, it is not real-time compliant as memory
would be dynamically allocated to copy the setting
values. Even a fixed size memory pool could be
exhausted given enough simultaneous real-time tasks.
Also, the jitter between the trigger and the task execution

WEPGF102 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

942C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

depends on the size of the setting values. This solution
fails requirements #1 and #3.

Reader-Writer Lock Mechanism
In this implementation, real-time tasks acquire a reader

lock just before starting their execution. Swapping
settings buffers is done when the corresponding writer
lock can be acquired. While this solution looks like it
could work, there are unavoidable cases where a real-time
task would be delayed beyond acceptable limits. This is
typically the case when two real-time tasks overlap (see
table 2 for an example).

Table 2: Reader-writer Example Preventing RT Task
Execution

Real-time task
A

Real-time task B Buffer
swapping task

Starts. Acquires
reader mutex.

Executing Swap required.
On hold

waiting for
writer mutex.

Executing Starts. Blocks
trying to acquire

reader mutex
because of

“Buffer
Swapping” task.

On hold

Executing Blocked On hold
Finishes.

Releases reader
mutex.

Blocked Acquires witer
mutex and

swaps buffers.
 Acquires reader

mutex.
Releases writer

mutex.

In this situation, task B is blocked for as long as task A

is executing, which is not acceptable as it fails
requirement #3. To avoid real-time tasks blocking,
readers could have priority over writers. But in this case,
overlapping real-time tasks would prevent settings from
ever being updated; the buffer swapping task would never
acquire the writer mutex as, at any time, one of RTA or
RTB would hold a reader mutex. This fails requirement
#4.

A LOCK-FREE, WAIT-FREE
SYNCHRONIZATION SOLUTION

Requirement #3 means that real-time tasks should
never block and never wait. We demonstrated earlier that
these requirements cannot be satisfied with a traditional
pointer swapping implementation, and that using any
form of locking before executing a real-time task is
impossible.

We introduce a solution that, by the use of an additional
setting values buffer, guarantees settings consistency
without using any locking mechanism in real-time tasks.
Furthermore, we guarantee that the delay between an

event and the execution of the corresponding real-time
task is fixed (requirement #3) by ensuring a fixed set of
operations is executed in-between.

Instead of using an active settings buffer and a pending
settings buffer, we use a reference settings buffer and two
real-time settings buffers. The reference buffer contains
the latest setting values, as modified by operators. This
buffer is never accessed by real-time tasks. The real-time
settings buffers are copies of the reference buffer at a
certain point in time. From now on, we’ll refer to the real-
time buffers as buffer A and buffer B. They can be in one
of the following four states:

• Current: the buffer can safely be accessed and
contains the current settings.

• Obsolete: the buffer can safely be accessed and
contains old settings.

• Modifiable: the buffer is not in use and cannot be
accessed. It is waiting for an update of setting
values.

• Updating: new setting values are being copied in the
buffer.

Buffers A and B are always in different but related

states. Transition between states for a single buffer is
presented in Fig. 1.

Figure 1 Buffer's states.

Overview of the Behaviour
The following simplified description focuses on buffer

A; buffer B follows the same pattern. Relations between
buffer states are described in depth in the next section.

When a real-time task reacts to an event, it becomes a
reader of the Current buffer (e.g. buffer A). Whenever
newer values are available in the other buffer (buffer B),
buffer A becomes Obsolete. Buffer A is guaranteed to
have its readers count eventually reduced to 0 since it
cannot receive new readers. As soon as buffer A has no
longer any readers, it becomes Modifiable. At some point
in time, new settings will be available and will be copied
from the reference buffer to buffer A; it goes to the state
Updating. When the copy is done, buffer A becomes
Current at the same time as buffer B becomes Obsolete,
coming back to the initial state. Operations available on
buffers depending on their state are listed in table 3.

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF102

Software Technology Evolution

ISBN 978-3-95450-148-9

943 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Table 3: Buffer Access Rights
 Can be

accessed by
readers

Can get
new
readers

Can be
modified

Current Yes Yes No
Obsolete Yes No No
Modifiable No No Yes
Updating No No Yes

States Transitions
A state machine representing this algorithm is presented

in Fig. 2.

Figure 2: Complete two-buffer state machine.

At start-up, the content of the reference buffer is copied to
both real-time buffers A and B, and buffer A is in Current
state while buffer B is in Modifiable state. Whenever the
reference buffer is modified and the modification
operation committed, a synchronization is triggered
(“Sync triggered” transition). Since buffer B is in the
Modifiable state, setting values are copied by a low
priority task (the buffer synchronizer) from the reference
buffer to buffer B; the latter goes to the state Updating. If
no buffer is Modifiable, the copy operation is put on hold.
To ensure consistency of settings, the buffer synchronizer
holds a reader lock on the reference buffer during the
copy. This time interval depends on the number of
modified settings, their size and the bandwidth of the
computer memory. On modern systems, it is typically
very short, between a few microseconds to a few
milliseconds. During that period of time, the reference
buffer cannot be modified and the threads writing the
settings coming from the high-level application are
blocked. This delay is acceptable as the transfer of
settings uses the Ethernet network, which is not real-time.
In addition, the buffer synchronizer keeps a list of just-
copied settings, the “settings to replicate”, which will be
useful when the next synchronization occurs. Once the
copy is done (“Sync done” transition), buffer A becomes
Obsolete and buffer B becomes Current. This latter
transition must be atomic to ensure that at any time, one
and only one buffer is in the Current state. When buffer A
has no readers any more, it becomes Modifiable (“A

readers = 0” transition). The next time a synchronization
will be triggered (second “Sync triggered” transition), the
modified settings will be copied from the reference buffer
to buffer A. This time though, this will not be sufficient
as, at this point, buffer A is not up-to-date with respect to
the settings that were copied earlier to buffer B. The
buffer synchronizer needs to use the “settings to replicate”
and copy them from buffer B to buffer A. When the copy
is done (second “Sync done” transition), buffer A and
buffer B atomically change state, going to Current and
Obsolete respectively. When buffer B has no readers any
more (“B readers = 0” transition), it goes back to the state
Modifiable, which is the initial state.

IMPLEMENTATION
This algorithm has been implemented in CERN’s real-

time C++ framework. We present details of our
implementation.

Atomic Operations

Some operations need to be carried out atomically to
ensure proper functioning of the algorithm. The list of
required atomic operations is as follows:

• Fetch and increment or increment and fetch on 32
bits (can be reduced to 8 bits)

• Decrement on 32 bits (can be reduced to 8 bits)
• Compare and swap on a pointer (optional, for

validation purposes only, can be replaced by a write
operation)

As explained earlier, it is required to always have one

and only one buffer in the Current state. This is achieved
by using a pointer to the Current buffer, whose value can
be changed atomically (supported by all modern CPU
architectures [1][2]). Instead of a simple write, an atomic
compare and swap is used in our implementation to
ensure that the pointer value is as expected before
modifying it; this is for validation purposes only and, in
production, only the write is required.

When a new reader requests access to the Current
buffer, its readers count is incremented, and its index is
retrieved and assigned to the reader. Since the Current
buffer pointer can be changed at any time, this sequence
(increment and read) needs to be atomic as well. Our
implementation uses a structure that can be modified
atomically. It contains the buffer index in the most
significant part and the number of readers in the least
significant part. We use 8 bits for the buffer index and 24
bits for the reader index (see Fig. 3). This structure allows
us to use a “fetch and increment” that will atomically
increment the number of readers and read the buffer
index. This primitive is again supported by all modern
CPU architectures [3][4]. Note that on architectures with
limited resources, the number of bits can be reduced from
8 to 1 and from 24 to 7 bits respectively, while still
allowing a maximum of 128 readers.

WEPGF102 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

944C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Figure 3: Internal structure for buffer management.

When a reader no longer needs access to a buffer, its

readers count must be decremented. This also needs to be
atomic because other readers may simultaneously modify
this count. However, in this case, there is no need to
retrieve the buffer index as it was retrieved when
requesting access to the buffer. Therefore, an atomic
decrement is sufficient and, again, this operation is
supported by all modern architectures [3][4].

Our implementation uses GCC atomic built-ins
__sync_fetch_and_add, __sync_fetch_and_sub, and
__sync_bool_compare_and_swap [5], requiring no hand-
written assembly at all. Such intrinsics exist on other
systems [6] and, as of C++11, in the language itself [7].

Synchronization Trigger

The synchronization of setting values is triggered when
the reference buffer contains new consistent setting
values. However, the synchronization can only happen if
a real-time buffer is in the Modifiable state. Figure 2
shows that a real-time buffer is in the Modifiable state if it
is not the Current buffer and it has no readers.

The buffer synchronizer thread (BST) ensures that a
synchronization happens as soon as possible by waiting
for the Obsolete buffer to go to Modifiable. Once a
Modifiable buffer is available, the BST checks
continuously whether a synchronization is needed. This is
achieved in several steps. First, the BST deduces from the
Current buffer pointer which buffer is Obsolete. The
Current buffer pointer is guaranteed not to change since
the BST is the only thread that can change it. To avoid a
busy wait when the number of readers of the Obsolete
buffer is greater than 0, we use a condition variable which
is signalled by readers when a buffer’s readers count
reaches 0. A synchronization request is indicated to the
BST via a boolean. Again, an expensive busy wait is
avoided thanks to a condition variable which is signalled
whenever the boolean is set to true.

CONCLUSION
This synchronization algorithm fulfils all the

requirements:
• Real-time compliant (no memory allocation)
• Consistent setting values (real-time buffers cannot

be modified while they have readers)
• Constant jitter between event and task execution

thanks to a fixed flow of execution and an O(1)
algorithm

• Settings made available as soon as possible

Nevertheless, implementing the solution is not free and
two major drawbacks have to be mentioned. First, there is
an obvious additional memory consumption; a third
buffer is required compared to the simpler double-buffer
approach. In modern systems, this is probably not an issue
as the amount of settings is typically small compared to
the amount of available RAM. The second drawback is
the lack of control on the delay between the
synchronization request and the actual availability of the
new settings to the real-time tasks. As the synchronization
cannot occur before all the Obsolete buffer’s readers have
completed their execution, a slow real-time task can delay
the synchronization. Therefore, it is possible to have new
real-time tasks executions not using the latest settings. In
our case, this is not a problem as we consider the sending
of new settings a slow and non-deterministic operation. If
this limitation is incompatible with the system to be
controlled, the possible evolution based on the usage of
additional real-time buffers is detailed in the next section.

Possible Evolution

Our implementation uses two real-time buffers, but in
practice, for busy real-time application with many tasks
and frequent changes of settings, one can use as many
buffers as the available memory allows. This would
reduce the likelihood not to have any Modifiable buffer
on synchronization request and therefore reduce
significantly the delay between settings modification and
settings availability. The management of Modifiable
buffers would need to be adapted so that the first
available Modifiable buffer can receive a copy of the
newest setting values. In practice, two real-time buffers
should be sufficient for most if not all real-time
applications.

REFERENCES
[1] Intel 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3A, Section 8.1.1,
Guaranteed atomic operations;
http://www.intel.com/content/dam/www/public/us/en
/documents/manuals/64-ia-32-architecture-software-
developer-vol-3a-part-1-manual.pdf

[2] ARM Synchronization Primitives, Section 1.2,
Exclusive accesses;
http://infocenter.arm.com/help/topic/com.arm.doc.dht
0008a/DHT0008A_arm_synchronization_primitives.
pdf

[3] Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, Section 8.1.2.2,
Software Controlled Bus Locking;
http://www.intel.com/content/dam/www/public/us/en
/documents/manuals/64-ia-32-architecture-software-
developer-vol-3a-part-1-manual.pdf

[4] ARM Synchronization Primitives, Section 1.3.3,
Implementing a semaphore;
http://infocenter.arm.com/help/topic/com.arm.doc.dht
0008a/DHT0008A_arm_synchronization_primitives.
pdf

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF102

Software Technology Evolution

ISBN 978-3-95450-148-9

945 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

[5] Atomic Builtins – Using the GNU Compiler
Collection (GCC), http://gcc.gnu.org/onlinedocs/gcc-
4.1.0/gcc/Atomic-Builtins.html

[6] InterlockedIncrement function (Windows),
https://msdn.microsoft.com/en-
us/library/windows/desktop/ms683614(v=vs.85).aspx

[7] std::atomic::fetch_add, C++ reference,
http://en.cppreference.com/w/cpp/atomic/atomic/fetc
h_add

WEPGF102 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

946C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

