
LOCAL MONITORING AND CONTROL SYSTEM FOR THE SKA
TELESCOPE MANAGER:

A KNOWLEDGE-BASED SYSTEM APPROACH FOR ISSUES
IDENTIFICATION WITHIN A LOGGING SERVICE*

M. Di Carlo, INAF Osservatorio Astronomico di Teramo, Italy
M. Dolci, INAF Osservatorio Astronomico di Teramo, Italy

G. M. Le Roux, SKA South Africa, Cape Town
R. Smareglia, INAF Osservatorio Astronomico di Trieste, Italy

P. S. Swart, SKA South Africa, Cape Town

Abstract
The SKA Telescope Manager (SKA.TM) is a

distributed software application aimed to control the
operation of thousands of radio telescopes, antennas and
auxiliary systems (e.g. infrastructures, signal processors,
...) which will compose the Square Kilometre Array, the
world’s largest radio astronomy facility currently under
development. SKA.TM, as an "element" of the SKA, is
composed in turn by a set of sub-elements whose tight
coordination is ensured by a specific sub-element called
“Local Monitoring and Control” (TM.LMC).

TM.LMC is mainly focussed on the life cycle
management of TM, the acquisition of every network-
related information useful to understand how TM is
performing and the logging library for both online and
offline sub-elements. Given the high complexity of the
system, identifying the origin of an issue, as soon as a
problem occurs, appears to be a hard task. To allow a
prompt diagnostics analysis by engineers, operators and
software developers, a Knowledge-Based System (KBS)
approach is proposed and described for the logging
service.

INTRODUCTION
A log message is the simplest possible storage

abstraction which says what happened and when. It is an
append-only, totally-ordered sequence of records
timestamped. So, a log is not all that different from a file
or a table. A file is an array of bytes, a table is an array of
records, and a log is really just a kind of table or file
where the records are sorted by time.

Since it is a very simple concept, developers tend to
underestimate the logging system but logs record what
happened and when and, for distributed data systems, this
can be the only way to find out the origin of an error.

Usually log files are written in a natural language
(human readable) and, even if it is very common, this is
not the best way to store informations: it does not allow to
reason programmatically** about those information.

Building a logging system with a declarative language
(for instance prolog) can give the possibility to reason
about facts of the communications and operations with an

* Work supported by the Italian Ministry of University and Research
(MIUR)

inference engine. For the specific case this document is
aimed to, with the adoption of a knowledge-based system
approach, TM.LMC could give to SKA engineers,
operators and software developers the possibility to ask
high level questions to the system in order to understand
how a failure came up or simply understand how the
system is working.

Information to Log
In order to understand which are the informations to log

it is important to make some consideration. In a
distributed environment:

 the entities which make up an application are active
(processes or agents);

 the interactions are based on message exchange
mechanism;

 the process life time is connected to the application
life time; the life time of an agent are usually
independent from life time of a specific application;

 the logical architecture can be set by different
patterns: client-server, peer to peer, etc.

 the middleware realize the physical and logical
connection between entities (subsystem, service,
object, component, process, agent, etc.).

From an high level point of view the kind of
applications like SKA TM define a logical network of
interactions which it is composed by different nodes that
interact each other and some of them act as coordinator or
controller (at least for the online part of the system). So it
is important to log:

 Node† identification,
 Node signal‡ declaration,
 Node interactions,
 Actions and loops.

† In a network, a node is a connection point, either a redistribution point
or an end point for data transmissions. In general, a node has
programmed or engineered capability to recognize and process or
forward transmissions to other nodes.
‡ An information usable by a node in order to control the behaviour of
another one or its behaviour in function with the one from another node.
** Doing something programmatically means that you can do it using
source code, rather than via direct user interaction or a macro

WEPGF097 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

930C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

KNOWLEDGE-BASED SYSTEM
APPROACH

A knowledge-based system is a computer
program that reasons and uses a knowledge
base to solve complex problems. It is composed by two
types of sub-systems: a knowledge base (facts§ about the
world) and an inference engine (logical assertions and
conditions about the world). To build it, it is possible to
use a formal language like Prolog.

A fact must start with a predicate (which is an atom**)
and end with a fullstop. The predicate may be followed by
one or more arguments (separated by commas) which are
enclosed by parentheses. The arguments can be atoms (in
this case, these atoms are treated as constants), numbers,
variables or lists. The formalism can be summarized in
this way: predicate(arg1, arg2, …, argN).

Besides, the prolog language can be seen as a language
for database queries; in fact, in a relational database a
tuple is a generic element of a relation with attributes.

Figure 1: Prolog as database.

In Figure 1, it is shown how it is possible to represent

two tables with the prolog language (the table employee
and the table department) and two possible queries: the
first one which give the names of all employees earning
more than 28000 and the second one which give the name
of the manager of the department Customer.

Interface
In order to allow software developers to use such a

formalism without actually knowing it, a possibility is to
look at the symbolic representation and try to generalize it
following some general rule in order to finally get a
prolog theory.

Based on the definition of a fact, a very simple way to
log programmatically informations can be the following
one:

logger.log(level, keyword-predicate, arguments);

§

A fact is a truth about the real world that can be represented as a
symbol, in order to be easily manipulated by programs.
** An atom, in Prolog, means a single data item like a string or a symbol
like likes, john, and pizza, in likes(john, pizza).

where level is an enumerator, the keyword-predicate is a
string and the arguments are an array of strings. This
method can translate the informations into a Prolog fact,
avoiding the developers to study and use the Prolog
language. The only thing they have to do is indeed to
choose a list of words representing the informations
needed to store. So it is important to have a strong
analysis based on UML or other modelling language. This
is because the words used to log must have a sense and
must not be chosen casually. Anyway, this is only a
method to store informations and not a mechanism to
query them. There is still a need to learn the Prolog
language in order to gain full advantage from the use of
the declarative approach (for simple query it is possible
to make a generic tool, for example for level, date).
Besides it will be always possible to search for a string
directly in the text file just opening it with a notepad tool.

Compared to an old logging system (using for example
the natural language), the proposed one aims to formalize
every phrase in a sort of database (a Prolog database)
where tables are dynamically built on the predicates
chosen. Let’s take the following log line:

Attaching appender named [CONSOLE-REQUEST] to
Logger[TangoClientRequests]

The Prolog translation could be the following:

attaching(appender(‘CONSOLE-REQUEST’),
logger(‘TangoClientRequests’)).

Working in this way will give us the advantage to easily
search for ‘appender‘ or ‘logger‘ (because we defined it
as predicates) or directly searching for the predicate
‘attaching‘.

TANGO EXAMPLE
Tango[1] has been chosen by SKA Organization as a

common middleware for communication and
development. In this work it is used the same framework
to show a proof of concept concerning a declarative
approach based on the Prolog language.

A Counter Device
A counter device is a software that implements the

following tango commands:
 PlusOne: increase the counter by one;
 MinusOne: decrease the counter by one;
 Read: read the value of the counter;
 SetMaxValue: set the max value for the counter (the

counter will start from 0 and will never reach the
maximum value but only the max – 1);

 SetCounterConsumer: set the name of the device
which will use it (for logging purpose);
Reset: set the counter value to 0.

The device will throw an event every time its value
changes (a Tango change event) and every time the value
is reset (when the value is equal to zero a tango user event

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF097

Software Technology Evolution

ISBN 978-3-95450-148-9

931 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

is thrown). Based on the analysis on the informations to
log, a possible representation can be the one shown in
Table 1.

Table 1: Log Information Expected from the Counter

Information Prolog
formalism Counter example

Node
identification

entity(entity-
name, entity-
type).

entity(counter,
‘LRU’).††

Node signal
declaration

declares(entity-
name, signal).

declares(counter, ‘+’).

declares(counter, ‘-’).

declares(counter,
reset).
declares(counter,
read).

Node
interactions

relation-
word(emitter-
name, receiver-
name, signal,
…).

interaction(consumer,
counter, ‘+’).

Based on Table 1, it is possible to imagine a real
following:

Figure 2: Real Log Example.

With this log file it is possible to query it for retrieving
all the messages prior a certain date:
interaction(S,X,Y,Z),S@<date(2015,5,15,10,50,0,31,-,-).

But it is also possible to make complex query like
counting ‘+ signal’ and ‘- signal’ to check if the
difference is what we expect:
findall([], interaction(D,X,Y,'+'), L), length(L, N),
findall([], interaction(D, X,Y,'-'), L1), length(L1, N1), Tot
is N-N1.

†† An LRU in SKA terminology means “ line replaceable unit”.

An Emom Device
In order to demonstrate the power of a declarative

approach for the logging service, it is helpful to introduce
an example that allows to generate a meaningful log.

Emom, in the context of a gym, means “every minute
on the minute” and it is a technique for training for which
a gymnast has to make an exercise every minute in less
than a minute. Usually in an even minute is an exercise
while in an odd minute is another one. To help people
with this practice many app have been created (usually for
smartphone) which indicate with a different colour
whether the current minute is odd or even (see Figure 3:
Emom Gui Even/Odd).

Figure 3: Emom Gui Even/Odd.

Based on the counter example, it is possible to build the

Emom device with the help of two Counter Devices, one
for the seconds and the other one for the minutes. In the
Emom device, there will be a thread which will send a
command every second to the seconds counter and, in
case of the reset event, it will send a “PlusOne” command
to the minute counter. When a minute changes an event is
raised from the device: an “Odd” event if the minute is
odd, an “Even” event if the minute is even.

The commands owned by the device are:
 Start: start the emom process;
 Stop: stop the emom process;
 Reset: reset the two counters;
 SetMinuteCounterDevName: set the name of the

device for minute counting;
 SetSecondCounterDevName: set the name of the

device for second counting.

Figure 4: The Emom device.

log like the

WEPGF097 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

932C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

The emom process is summarized in Figure 4:
1. The emom device sends a «PlusOne» command

every second to the first counter (for second);
2. An event is generated where the counter second

reset its value;
3. When happens a «PlusOne» command to the

second counter (for minute);
4. An event is generated where the counter minute

reset its value;
5. If minute is «odd», the emom throw the

corresponding event otherwise an «even» event.

Log4Prolog: A Tango LogViewer Branch

To be able to take advantage of the declarative
approach with Prolog log message, it is necessary to
modify the standard Tango LogViewer creating a
software branch. The purpose is to create a plugin
architecture so that a developer can create a specific filter
for his development or simply use a logic console editor
to ask some particular or specific question to the engine.

Every filter is a custom class that has to implement a
specific interface called IFilter. When starting the
application the application instantiates the filter present
in the configuration file (an xml file) and adds the plugin
in the application. A filter has the ability to show a new
popup (with a title and size) or directly add a new control
inside the main control panel of the user interface. The
running application is shown in Figure 5: The Log4Prolog
Application where it is shown six plugin: four of them are
simple controls added to the main user interface (which
emulate the standard filters of the old Tango LogViewer
app) and the other two are define two dialogs. The first
one is a prolog console where an expert can ask high level
question while the second one (the upper one in the
figure) is a specific plugin created for the emom example
(called emom log analyser).

Figure 5: The Log4Prolog Application.

In specific the Emom log analyser define the logic
query described in Table 2.

Table 2: Query Explanation

Title Log query explanation
Counter second
interaction

Find all interaction messages sent to
the second counter device then count
them.

Counter second
pushEvent

Find all push-event‡‡ messages sent
from the second counter device then
count them.

Counter minute
interaction

Find all interaction messages sent to
the minute counter device then count
them.

Counter minute
pushEvent

Find all push-event messages sent
from the minute counter device then
count them

Emom event
interaction

Find all event-interaction messages
sent to the emom device then count
them.

Emom
threadStep

Find all thread-step messages sent
from the emom device then count
them.

CONCLUSION

In this document a declarative approach in a logging
system has been described. A good way to develop
software is thinking in term of test and unit test. In
addition to these techniques it is desirable to think in
terms of logging so that the log file can be a way to read
what the software is doing. If it is chosen to use a
declarative language it is possible to work with files ready
to be queried because of the formalism used.

The main disadvantage is related to the declarative
language itself. However, by thinking the language as
aimed at creating artificial intelligence or as a
sophisticated database language (more NoSQL-like than
most NoSQL approaches), it appears just like any other
tool in the collection of a software architect that can help
in solving specific problems.

REFERENCES
[1] JM. Chaize, A. Goetz, WD. Klotz, J. Meyer, M.

Perez, E. Taurel, P. Verdier, “The ESRF TANGO
control system status”, ARXIV , November 2011

‡‡ A push event in Tango occurs when the developer wants to force an
event to be thrown.

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF097

Software Technology Evolution

ISBN 978-3-95450-148-9

933 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

