

MANAGING A REAL-TIME EMBEDDED LINUX PLATFORM WITH
BUILDROOT

J. Diamond#, K. Martin, FNAL*, Batavia, IL 60510, U.S.A.

Abstract
Developers of real-time embedded software often need

to build the operating system, kernel, tools and supporting
applications from source to work with the differences in
their hardware configuration. The first attempts to
introduce Linux-based real-time embedded systems into
the Fermilab accelerator controls system used this
approach but it was found to be time-consuming, difficult
to maintain and difficult to adapt to different hardware
configurations. Buildroot is an open source build system
with a menu-driven configuration tool (similar to the
Linux kernel build system) that automates this process. A
customized Buildroot [1] system has been developed for
use in the Fermilab accelerator controls system that
includes several hardware configuration profiles
(including Intel, ARM and PowerPC) and packages for
Fermilab support software. A bootable image file is
produced containing the Linux kernel, shell and
supporting software suite that varies from 3 to 20
megabytes large – ideal for network booting. The result
is a platform that is easier to maintain and deploy in
diverse hardware configurations.

INTRODUCTION
Scientific Linux [2] is a Linux distribution produced by

a collaborate effort between Fermilab, CERN and other
members of the global Linux community. Scientific
Linux has been used successfully as a target platform for
data acquisition in the Fermilab accelerator control
system but only on commodity PC hardware and not with
real-time extensions [3]. When attempting to adopt
Scientific Linux to a real-time embedded application
some road-blocks were encountered. The first was that
Linux is not designed to be a hard real-time operating
system. There are however, several options for making
Linux real-time and all of these options require a custom
kernel be built. At Fermilab, one route chosen was to use
the Real-Time Application Interface (RTAI) [4]. The next
road-block was the minimum foot-print of the installed
system. The minimum Scientific Linux install profile
requires 1.5GB of storage. This is a concern because it is
desirable to network boot the targets. The requirement for
a network boot capability drastically reduces the
acceptable footprint size as the entire boot image needs to
be transferred over the network. Finally, Scientific Linux
is a binary distribution targeted for x86 architecture, thus
it would not be possible to use as a platform for ARM and
PowerPC targets. These concerns drove the decision to
use a custom Linux platform built from the ground-up.

LINUX “FROM SCRATCH”
The Linux from Scratch website [5] was chosen as the

model for the attempt to build a custom Linux platform
from source. Linux from Scratch is an on-line resource
that explains in step-by-step fashion how to build an
entire Linux operating system from source. First the user
partitions the target’s disk on the build system. Then the
necessary source packages (about three dozen) and
patches (another dozen) are downloaded onto the build
system and unpacked into a special “chroot environment”.
Then the toolchain packages are built and installed – not a
trivial task in its own right. The toolchain is then used to
build a complete Linux system from inside of the chroot
environment - kernel, boot-loader, shell, etc. Once the
system is in place the boot-scripts are installed and
configured. Finally, the boot-loader is installed on the
target CF disk and an attempt is made to boot the target
(things rarely work on the first try).

As illustrated above, the process is exhausting and can
take several days to complete. It should be noted that the
target platform was x86 so a cross-compile toolchain was
not attempted (ARM targets came later). Once developed
the root filesystem could be used to boot any target with a
similar hardware architecture.

The root filesystems produced with this method were in
the range of two to three hundred megabytes. One
significant drawback is that a boot image of this size is
still too large to network boot. The decision was made to
store the kernel, boot-scripts and network configuration
on a Compact Flash (CF) disk installed with each target
node and the root filesystem on a common network
filesystem that could be mounted by each target at boot
time. The network filesystem also contains the
application programs, libraries and data areas.

One issue that was noticed early on was the failure rate
of the CF disks. CF disks are susceptible to failure after
many write-cycles. As noted above, application data is
written to a network filesystem instead of the CF disk. To
reduce the CF write cycles the /tmp and /log partitions
were moved to a RAM disk and the system log was
redirected to a syslog server. These efforts were able to
mitigate the failure rate of the CF disks.

Another significant challenge with this platform was
maintainability. Installing new software packages in the
root filesystem was easy but deploying to targets already
in the field meant physically replacing the CF disks.
Furthermore, the root filesystem installed on the network
filesystem would creep away from its original state over
time without version control system in place.

 __

* Operated by Fermi Research Alliance, LLC under Contract
 No. De-AC02-07CH11359 with the United States Department of

Energy
jdiamond@fnal.gov

WEPGF096 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

926C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

CONTROL SYSTEM INTEGRATION
At first the support libraries available for integrating

with the Fermilab accelerator controls system (ACNET)
[6] [7] only supported VxWorks. Package Exchange
Protocol (PEP), a light weight UDP protocol was
developed to bridge communication between Linux
targets and VxWorks targets (Fig. 1). Support software
that ran on a VxWorks target was deployed to bridge
communication between ACNET and Linux targets
deployed in the field. This method was successful and
supported many, but not all of the features expected from
an ACNET front end node.

Figure 1. Method for using PEP to bridge ACNET request
to Linux Targets.

Later, a suite of software was developed for interfacing

Linux front end nodes with ACNET [8]. This ACNET
support software is written in Erlang and runs inside of
the Erlang virtual machine as its own process (Fig. 2).
Using this software the user can write data acquisition
drivers in Erlang or using a C++ API. The challenge in
this model is how to attach the data acquisition driver,
running in its own process to the real-time application
running in another process. The decision was made to
again utilize the PEP protocol to forward ACNET
requests to the real-time application process. In this
architecture the communication was done with local
sockets instead of over Ethernet.

Figure 2. ACNET process utilizing PEP for inter-process
communication.

Using this architecture the existing applications using

the bridge method were adapted to the new Linux
ACNET platform without much effort (Fig. 3). The

interface remained the same and the bridge software was
moved into the Erlang framework. An alternate method
was developed that replaced the PEP protocol with RTAI
message queues and shared memory. This method allows
large amounts of data to be shared between the ACNET
process and the data acquisition process without
transferring through a UDP socket.

Figure 3. Replacing PEP with RTAI IPC methods.

LOOKING TO IMPROVE
Out of the experience of building a real-time embedded

Linux platform from scratch came three desired
improvements:

1. A smaller footprint operating system that could be
packaged into a network-deliverable boot-image

2. An automated system for building kernel and root
filesystem that could support multiple target
architectures and hardware configurations

3. An integrated system for building and deploying
application software

To address these improvements an effort was begun to
look to the open source community for a “best-practice”
approach to deploying an embedded Linux platform.

BUILDROOT
Buildroot is an open source build system with a menu-

driven configuration tool (similar to the Linux kernel
build system) that completely automates this process
(Fig. 4). It supports ucLibc [9], a low-footprint
alternative to the GNU standard C library and Busybox
[10], which combines many of the standard UNIX utilities
and a shell into a single low-footprint executable.

Figure 4. Buildroot configuration menu.

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF096

Software Technology Evolution

ISBN 978-3-95450-148-9

927 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

In addition to providing a kernel, shell and basic
utilities, hundreds of software packages are supported.
The user simply selects which software package to
include in the boot-image and the build system
downloads, unpacks, configures, compiles and installs it.
The Buildroot configuration system includes an option to
combine the kernel and root filesystem into a single
bzImage at the end of the build process. A boot-loader
and this bzImage file are the only components needed to
boot an embedded Linux target.

The first build usually takes a couple of hours,
depending on the processing power and network
bandwidth of the build machine. This is primarily
because of the sheer size of the tool-chain and kernel
builds. Once these packages are built, subsequent builds
can be done in a matter of seconds.

The footprint depends in large part on the choice of
software packages and system libraries. Using ucLibc,
Busybox and a streamlined kernel the resulting footprint
was 3.5 megabytes – a 99% reduction in size from the
existing Linux platform. When the build configuration
was expanded to include Erlang, ACNET support
libraries and application software the footprint grew to 20
megabytes. With this footprint size, the entire kernel and
filesystem could be downloaded by the boot-loader and
loaded into a RAM disk on start-up. In order to store the
network configuration locally, the /etc partition was all
that was left to store on the CF disk. The boot-time of
one target was clocked at under nine seconds from power-
on to login prompt.

REVISION CONTROL
The Buildroot project is maintained in a public Git

repository. A Fermilab clone of the master branch was
made and is merged with the project’s repository when
upgrades or new packages are desired. Custom Buildroot
and Kernel configurations for each target are maintained
in the repository. Custom application packages are
maintained in the repository as well.

APPLICATION PACKAGES
Buildroot supports hundreds of software packages out

of the box as well as custom packages. A Buildroot
package consists of two parts: a menu description file and
a Makefile that is included as part of the build process.
Buildroot uses variables defined in the Makefile to find
dependencies, to find out where to download the software
from and what specific configuration and build options to
use.

Dozens of custom software packages were developed
for applications and support libraries specific to Fermilab.
Buildroot downloads the software directly from a version
control server using a specific tag or branch identified in
the Makefile.

NETWORK BOOT
The GRUB [11] boot-loader supports downloading the

bzImage file from a network filesystem at boot time.

GRUB must be built with the support for the network
adapter on the target. The network configuration is stored
in GRUB menu.lst file, which resides on the flash disk’s
boot partition.

APPLICATION BUILD ENVIRONMENT
All software that runs on the target must be built with

the toolchain that Buildroot builds as the first step in the
build process. A set of Makefiles was developed that
could be included in a developer’s C/C++ project that
builds using this toolchain. Deploying to remote targets
is supported using scp and ssh or by mounting a remote
filesystem accessible from the target and the build
machine.

ARM SUPPORT
Recently, Buildroot was utilized to deploy a real-time

embedded Linux platform for the ARM Cortex A-9 Hard
Processor System on the Altera Cyclone V FPGA. Cross
compiling was done by specifying the pre-built Linaro
ARM toolchain [12] as an external toolchain. A
community kernel configuration file for the Cyclone 5
FPGA SOC, available through RocketBoards.org [13],
was utilized to build the Linux kernel.

One notable difference between ARM and x86 targets
is that they use different boot loaders. The x86 targets use
GRUB and the ARM targets use U-Boot [14]. Like
GRUB, U-Boot is a flexible boot loader that allows for
network booting. Another difference due to U-Boot
though is that it is unable to boot a kernel image that is
integrated with a root filesystem. Thus, Buildroot was
configured to output the kernel and the root filesystem as
separate files. Also, ARM based Linux systems require a
device tree file. Fortunately a device tree file for the
Cyclone 5 FPGA SOC target was also available pre-made
from RocketBoards.org.

RESULTS
Buildroot has been successfully used to deploy real-

time embedded Linux systems in the Fermilab accelerator
control system for several projects running on x86 and
ARM hardware with applications such as magnet quench
protection, power supply regulation and beam
instrumentation. An effort is currently underway to
extend support for legacy PowerPC targets such as the
MVME 5500. We have confidence that adding support
for additional targets can be done with minimal effort
thanks to the efforts of the open-source embedded Linux
community.With Buildroot we were able to reduce the
operating system footprint and introduce version control
to the platform build process. We have found that
managing multiple architectures and hardware
configurations much easier than building platforms from
source would be.

WEPGF096 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

928C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

ACKNOWLEDGEMENTS
The ACNET Erlang framework was implemented by

Rich Neswold, Dennis Nicklaus, and Jerry Firebaugh
from the Femilab’s Controls Group.

REFERENCES
[1] http://buildroot.uclibc.org/
[2] https://www.scientificlinux.org/
[3] C. Briegel, J. Diamond, “Acsys Camera Implementation

Utilizing an Erlang Framework to C++ Interface”,
ICALEPCS (2013); San Francisco, CA, USA.

[4] https://www.rtai.org/
[5] http://www.linuxfromscratch.org/
[6] J. Patrick, “ACNET Control System Overview,” Fermilab

Beams-doc-1762-v1, http://beamdocs.fnal.gov/AD-
public/DocDB/ShowDocument?docid=176

[7] K. Cahill, L. Carmichael, D. Finstrom, B. Hendricks, S.
Lackey, R. Neswold, J. Patrick, A. Petrov, C. Schumann, J.
Smedinghoff, “Fermilab Control System,” Fermilab
Beams-doc-3260-v3, http://beamdocs.fnal.gov/AD-
public/DocDB/ShowDocument?docid=326

[8] D. Nicklaus, “An Erlang-based Front End Framework for
Accelerator Controls,” ICALEPCS (2011); Grenoble,
France.

[9] http://uclibc.org/
[10] http://www.busybox.net/

[13] http://www.rocketboards.org/
[14] http://www.denx.de/wiki/U-Boot

[11] https://www.gnu.org/software/grub/
[12] https://www.linaro.org/

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF096

Software Technology Evolution

ISBN 978-3-95450-148-9

929 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

