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Abstract 
Developers of real-time embedded software often need 

to build the operating system, kernel, tools and supporting 
applications from source to work with the differences in 
their hardware configuration.  The first attempts to 
introduce Linux-based real-time embedded systems into 
the Fermilab accelerator controls system used this 
approach but it was found to be time-consuming, difficult 
to maintain and difficult to adapt to different hardware 
configurations.  Buildroot is an open source build system 
with a menu-driven configuration tool (similar to the 
Linux kernel build system) that automates this process.  A 
customized Buildroot [1] system has been developed for 
use in the Fermilab accelerator controls system that 
includes several hardware configuration profiles 
(including Intel, ARM and PowerPC) and packages for 
Fermilab support software.  A bootable image file is 
produced containing the Linux kernel, shell and 
supporting software suite that varies from 3 to 20 
megabytes large – ideal for network booting.  The result 
is a platform that is easier to maintain and deploy in 
diverse hardware configurations. 

INTRODUCTION 
Scientific Linux [2] is a Linux distribution produced by 

a collaborate effort between Fermilab, CERN and other 
members of the global Linux community.  Scientific 
Linux has been used successfully as a target platform for 
data acquisition in the Fermilab accelerator control 
system but only on commodity PC hardware and not with 
real-time extensions [3].  When attempting to adopt 
Scientific Linux to a real-time embedded application 
some road-blocks were encountered.  The first was that 
Linux is not designed to be a hard real-time operating 
system.  There are however, several options for making 
Linux real-time and all of these options require a custom 
kernel be built.  At Fermilab, one route chosen was to use 
the Real-Time Application Interface (RTAI) [4].  The next 
road-block was the minimum foot-print of the installed 
system. The minimum Scientific Linux install profile 
requires 1.5GB of storage.  This is a concern because it is 
desirable to network boot the targets.  The requirement for 
a network boot capability drastically reduces the 
acceptable footprint size as the entire boot image needs to 
be transferred over the network.  Finally, Scientific Linux 
is a binary distribution targeted for x86 architecture, thus 
it would not be possible to use as a platform for ARM and 
PowerPC targets.  These concerns drove the decision to 
use a custom Linux platform built from the ground-up. 

LINUX “FROM SCRATCH” 
The Linux from Scratch website [5] was chosen as the 

model for the attempt to build a custom Linux platform 
from source.  Linux from Scratch is an on-line resource 
that explains in step-by-step fashion how to build an 
entire Linux operating system from source.  First the user 
partitions the target’s disk on the build system.  Then the 
necessary source packages (about three dozen) and 
patches (another dozen) are downloaded onto the build 
system and unpacked into a special “chroot environment”.  
Then the toolchain packages are built and installed – not a 
trivial task in its own right.  The toolchain is then used to 
build a complete Linux system from inside of the chroot 
environment - kernel, boot-loader, shell, etc.  Once the 
system is in place the boot-scripts are installed and 
configured.  Finally, the boot-loader is installed on the 
target CF disk and an attempt is made to boot the target 
(things rarely work on the first try). 

As illustrated above, the process is exhausting and can 
take several days to complete.  It should be noted that the 
target platform was x86 so a cross-compile toolchain was 
not attempted (ARM targets came later).  Once developed 
the root filesystem could be used to boot any target with a 
similar hardware architecture. 

The root filesystems produced with this method were in 
the range of two to three hundred megabytes.  One 
significant drawback is that a boot image of this size is 
still too large to network boot.   The decision was made to 
store the kernel, boot-scripts and network configuration 
on a Compact Flash (CF) disk installed with each target 
node and the root filesystem on a common network 
filesystem that could be mounted by each target at boot 
time.  The network filesystem also contains the 
application programs, libraries and data areas. 

One issue that was noticed early on was the failure rate 
of the CF disks.  CF disks are susceptible to failure after 
many write-cycles.  As noted above, application data is 
written to a network filesystem instead of the CF disk.  To 
reduce the CF write cycles the /tmp and /log partitions 
were moved to a RAM disk and the system log was 
redirected to a syslog server.  These efforts were able to 
mitigate the failure rate of the CF disks. 

Another significant challenge with this platform was 
maintainability.  Installing new software packages in the 
root filesystem was easy but deploying to targets already 
in the field meant physically replacing the CF disks.  
Furthermore, the root filesystem installed on the network 
filesystem would creep away from its original state over 
time without version control system in place.   
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CONTROL SYSTEM INTEGRATION 
At first the support libraries available for integrating 

with the Fermilab accelerator controls system (ACNET) 
[6] [7] only supported VxWorks.  Package Exchange 
Protocol (PEP), a light weight UDP protocol was 
developed to bridge communication between Linux 
targets and VxWorks targets (Fig. 1). Support software 
that ran on a VxWorks target was deployed to bridge 
communication between ACNET and Linux targets 
deployed in the field. This method was successful and 
supported many, but not all of the features expected from 
an ACNET front end node. 

 

 
Figure 1. Method for using PEP to bridge ACNET request 
to Linux Targets. 

 
Later, a suite of software was developed for interfacing 

Linux front end nodes with ACNET [8].  This ACNET 
support software is written in Erlang and runs inside of 
the Erlang virtual machine as its own process (Fig. 2).  
Using this software the user can write data acquisition 
drivers in Erlang or using a C++ API.    The challenge in 
this model is how to attach the data acquisition driver, 
running in its own process to the real-time application 
running in another process.  The decision was made to 
again utilize the PEP protocol to forward ACNET 
requests to the real-time application process. In this 
architecture the communication was done with local 
sockets instead of over Ethernet. 

 
Figure 2. ACNET process utilizing PEP for inter-process 
communication. 

 
Using this architecture the existing applications using 

the bridge method were adapted to the new Linux 
ACNET platform without much effort (Fig. 3).  The 

interface remained the same and the bridge software was 
moved into the Erlang framework.  An alternate method 
was developed that replaced the PEP protocol with RTAI 
message queues and shared memory.  This method allows 
large amounts of data to be shared between the ACNET 
process and the data acquisition process without 
transferring through a UDP socket. 

 

 
Figure 3. Replacing PEP with RTAI IPC methods. 

LOOKING TO IMPROVE 
Out of the experience of building a real-time embedded 

Linux platform from scratch came three desired 
improvements: 

1. A smaller footprint operating system that could be 
packaged into a network-deliverable boot-image 

2. An automated system for building kernel and root 
filesystem that could support multiple target 
architectures and hardware configurations 

3. An integrated system for building and deploying 
application software 

To address these improvements an effort was begun to 
look to the open source community for a “best-practice” 
approach to deploying an embedded Linux platform. 

BUILDROOT 
Buildroot is an open source build system with a menu-

driven configuration tool (similar to the Linux kernel 
build system) that completely automates this process 
(Fig. 4).  It supports ucLibc [9], a low-footprint 
alternative to the GNU standard C library and Busybox 
[10], which combines many of the standard UNIX utilities 
and a shell into a single low-footprint executable. 
 

 
Figure 4. Buildroot configuration menu. 
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In addition to providing a kernel, shell and basic 
utilities, hundreds of software packages are supported.  
The user simply selects which software package to 
include in the boot-image and the build system 
downloads, unpacks, configures, compiles and installs it.  
The Buildroot configuration system includes an option to 
combine the kernel and root filesystem into a single 
bzImage at the end of the build process.  A boot-loader 
and this bzImage file are the only components needed to 
boot an embedded Linux target. 

The first build usually takes a couple of hours, 
depending on the processing power and network 
bandwidth of the build machine.  This is primarily 
because of the sheer size of the tool-chain and kernel 
builds.  Once these packages are built, subsequent builds 
can be done in a matter of seconds.   

The footprint depends in large part on the choice of 
software packages and system libraries.  Using ucLibc, 
Busybox and a streamlined kernel the resulting footprint 
was 3.5 megabytes – a 99% reduction in size from the 
existing Linux platform.  When the build configuration 
was expanded to include Erlang, ACNET support 
libraries and application software the footprint grew to 20 
megabytes.  With this footprint size, the entire kernel and 
filesystem could be downloaded by the boot-loader and 
loaded into a RAM disk on start-up.  In order to store the 
network configuration locally, the /etc partition was all 
that was left to store on the CF disk.  The boot-time of 
one target was clocked at under nine seconds from power-
on to login prompt. 

REVISION CONTROL 
The Buildroot project is maintained in a public Git 

repository.  A Fermilab clone of the master branch was 
made and is merged with the project’s repository when 
upgrades or new packages are desired.  Custom Buildroot 
and Kernel configurations for each target are maintained 
in the repository.  Custom application packages are 
maintained in the repository as well. 

APPLICATION PACKAGES 
Buildroot supports hundreds of software packages out 

of the box as well as custom packages.  A Buildroot 
package consists of two parts: a menu description file and 
a Makefile that is included as part of the build process.    
Buildroot uses variables defined in the Makefile to find 
dependencies, to find out where to download the software 
from and what specific configuration and build options to 
use. 

Dozens of custom software packages were developed 
for applications and support libraries specific to Fermilab.  
Buildroot downloads the software directly from a version 
control server using a specific tag or branch identified in 
the Makefile. 

NETWORK BOOT 
The GRUB [11] boot-loader supports downloading the 

bzImage file from a network filesystem at boot time.  

GRUB must be built with the support for the network 
adapter on the target.  The network configuration is stored 
in GRUB menu.lst file, which resides on the flash disk’s 
boot partition. 

APPLICATION BUILD ENVIRONMENT 
All software that runs on the target must be built with 

the toolchain that Buildroot builds as the first step in the 
build process.  A set of Makefiles was developed that 
could be included in a developer’s C/C++ project that 
builds using this toolchain.  Deploying to remote targets 
is supported using scp and ssh or by mounting a remote 
filesystem accessible from the target and the build 
machine. 

ARM SUPPORT 
Recently, Buildroot was utilized to deploy a real-time 

embedded Linux platform for the ARM Cortex A-9 Hard 
Processor System on the Altera Cyclone V FPGA. Cross 
compiling was done by specifying the pre-built Linaro 
ARM toolchain [12] as an external toolchain.  A 
community kernel configuration file for the Cyclone 5 
FPGA SOC, available through RocketBoards.org [13], 
was utilized to build the Linux kernel.  

One notable difference between ARM and x86 targets 
is that they use different boot loaders. The x86 targets use 
GRUB and the ARM targets use U-Boot [14]. Like 
GRUB, U-Boot is a flexible boot loader that allows for 
network booting.  Another difference due to U-Boot 
though is that it is unable to boot a kernel image that is 
integrated with a root filesystem. Thus, Buildroot was 
configured to output the kernel and the root filesystem as 
separate files. Also, ARM based Linux systems require a 
device tree file. Fortunately a device tree file for the 
Cyclone 5 FPGA SOC target was also available pre-made 
from RocketBoards.org. 

RESULTS 
Buildroot has been successfully used to deploy real-

time embedded Linux systems in the Fermilab accelerator 
control system for several projects running on x86 and 
ARM hardware with applications such as magnet quench 
protection, power supply regulation and beam 
instrumentation.  An effort is currently underway to 
extend support for legacy PowerPC targets such as the 
MVME 5500.  We have confidence that adding support 
for additional targets can be done with minimal effort 
thanks to the efforts of the open-source embedded Linux 
community.With Buildroot we were able to reduce the 
operating system footprint and introduce version control 
to the platform build process.  We have found that 
managing multiple architectures and hardware 
configurations much easier than building platforms from 
source would be. 
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