
CXv4, A MODULAR CONTROL SYSTEM
Dmitry Bolkhovityanov, Pavel Cheblakov, Fedor Emanov,

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Abstract
CX control system is used at VEPP-5 and several other

BINP facilities. CX version 4 is designed to provide more
flexibility and enable interoperability with other control sys-
tems. In addition to device drivers, most of its components
are implemented in a modular fashion, including data ac-
cess at both client and server sides. The server itself is a
library. This approach allows clients to access several dif-
ferent control systems simultaneously and natively (without
any gateways). CXv4 servers are able to provide data access
to clients from diverse CS architectures/protocols, subject
to appropriate network module being loaded. The server
library, coupled with “null link” client-server access module,
allows to create standalone monolythic programs for spe-
cific small applications (such as test benches and device test
screens/utilities) using the same ready code from large-scale
control system but without its complexity.
CXv4 design principles and solutions are discussed and

first deployment results are presented.

CX
CX was designed at BINP in late 1990s as a general con-

trol system framework which runs on Linux and several fla-
vors of *NIX. Initially made for CAMAC, CX now supports
a wide range of hardware attached via different fieldbuses,
including PCI/CompactPCI, VME, CANbus, RS232/485
and Ethernet.

CX is used at VEPP-5 Injection Complex [1] and at several
other BINP facilities and small-scale experiments [2–4].

VEPP-5 will supply electrons and positrons to two BINP
machines — VEPP-4 [5] and VEPP-2000 [6] in the near
future. VEPP-4 uses a mix of an inhouse-designed software
(with roots dating back to 1970s) [7] and EPICS; VEPP-2000
employs a custom software named VCAS [8]. For VEPP-5
to carry out its mission, its control system must be able to
communicate with partners’ control systems.

THE PROBLEM OF INTEROPERATION
CX, like most control system frameworks used in high

energy physics experiments, is distributed and is based on
a 3-layer model (Fig. 1a). A typical framework is closely
tied to some network protocol and is often designed jointly
with a dedicated protocol. I.e., the client library implements
the client side of a protocol, and server implements its side
(Fig. 1b); CX belongs to this class.

However, a need to interact with a different control sys-
tem framework arises sooner or later in real world. This is
often solved via "gateways" — dedicated software, translat-
ing one protocol to another (Fig. 2). This approach has its
disadvantages besides a necessity for an additional software

a b

Client

Device drivers

Server

Device drivers

Client

Server

Application
layer

Hardware

(middleware)

layer

Server layer Srv−side proto impl

Cln−side proto impl

Figure 1: 3-layer architecture. (a) General layout; (b) Client-
server communication.

component. Not only does such gateway have to convert
between protocols, but sometimes between different data
paradigms, it convering in a very inconvenient place.

1st control system 2nd control system

Client

Server
Srv−side proto impl

Cln−side proto impl

Server

Client
Cln−side proto impl

Srv−side proto impl

G
 a

 t
e

w
 a

 y

Figure 2: Interaction between different control systems via
a gateway.

SOLUTION
In authors’ opinion [9, p.3], the key to solution is separa-

tion of network protocol specifics and implementation from
both client libraries and server. That was done in CX version
4 (see Fig. 3).

Data−access
plugins

. . .
cda

cx v2
cx

vc
as

in
sr

v

Client

Server

Client
Cln−side proto impl

Srv−side proto impl

cxsd_hw

cx . . .
Data−access

frontendsvc
as

Server

Figure 3: CXv4 modular structure.

Client library doesn’t interact with server directly but
rather via plugins. The library core provides clients with

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF093

Software Technology Evolution

ISBN 978-3-95450-148-9

915 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

N
et

w
or

k

N
et

w
or

k

Network

Server program Utility program Small bench program
a b c

Remote−access−enabled app
d

cxsd_hw

in
sr

v

libcxsd libcxsd
cxsd_hw

insrv
cda

GUI / logic

libcxsd
cxsd_hw

insrv
cda

GUI / logic

cx

Device drivers Device drivers

Existing

application

cx
sd

_h
w

cx

lib
cx

sd
ad

ap
te

r

Drv1 Drv2 cda

cx
Data−access

frontends. . .

Figure 4: Possible combinations of CX modules.

protocol-agnostic access to data, hence its name “CDA” be-
ing Cx Data Access. Data-access plugins are free to imple-
ment any communication protocol; this enabled to support
old CX versions seamlessly via “v2cx” plugin.
The situation is mirrored on a server side. Server core

isn’t engaged in network interaction, but just maintains an
operating environment for data (channels) and drivers. Ex-
ternal access to data is provided by plugins so-called “data
frontends”. Frontends access data via a simple API pro-
vided by cxsd_hw module, and are also free to implement
any communication protocol.

Server code is implemented as a library (libcxsd), so that
the server binary (cxsd) should be just a “conductor” that
controls an orchestra of software modules (libcxsd, fron-
tends, drivers, libraries, etc.).

Since most components of client and server sides are mod-
ules, these modules can be combined in several interesting
ways.

• Device drivers can access channels from neighbor
drivers in the same way as clients via “insrv” plu-
gin/frontend (Fig. 4a). I.e., a unified API is used for
both local and remote access.
This gives freedom to place parts of control system
(such as calculations or control logic) at either client
or server side.
Besides, data from other servers (and control systems)
is accessed in exactly the same way (albeit via a differ-
ent protocol(s)).

• The same insrv:: “null-link” can be used to com-
bine GUI and server with drivers into a single simple
application without any need for network interaction
(Fig. 4b).
This is handy for small tasks such as a test bench for
some type of device.

• A similar setup with a network frontend added (Fig. 4c)
is suitable for small facilities where a full-scale 3-layer
control system would be an overkill.
This setup combines simplicity of a monolythic appli-
cation with ability to access control channels remotely
(which is useful for various tools like archivers).

• Implanting libcxsd with cx frontend to an existing
application (such as an “all-in-one” test bench program)
is a cheap way to add it remote access abilities (Fig. 4d).

IMPLEMENTATION CHALLENGES
Different Data Paradigms
Approach to data management differs between control

systems.1 Generally the concept of “channels” is used. A
channel is a named data entity which can be atomically
read and/or written to. However, more variants, such as
properties, commands, methods, etc. exist.

To minimize interoperation problems CX uses as simple
approach as possible:

• Any object addressable in a control system is a chan-
nel.2 Channels can be either read-only or read-write.

• Commands are presented as channels. Writing to “com-
mand channel” triggers an action; value written can be
used as parameter.
This convention is implemented at device driver level
and doesn’t require any specific handling at other levels.

• Channels are addressed by names at the client side. A
name can begin with a “PROTOCOL::” prefix which
selects a way to access data and is usually the name of
a corresponding protocol or control system (missing
prefix taken to be “CX::”).
What goes after PROTOCOL:: is up to data-access-
plugin and is passed to it verbatim.

Main Loop Integration
Any non-trivial application or application framework im-

plements some kind of a main loop. Interaction with the
main loop can use different models: callbacks in Xt/Motif,
signals/slots in Qt, events in LabWindows, select()/poll()
in console programs, etc. This diversity of main-loop
paradigms presents serious problems when making code
which should be able to “live” in any environment.

However, let’s look what is required for vital activity of
an I/O library or a device driver.
1. To watch for events on a file descriptor (typically rea-

dyness for read and/or write).
2. To request a timeout (either after some period or at

exact time).

1 Probably some “ideal way” to operate data in control systems do exist (as
well as “idea of data”, in platonian sense), but authors are unaware of any
definitive work on this subject.

2 This is similar to *NIX approach “everything is a file”.

WEPGF093 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

916C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

This functionality is present in any main loop implementa-
tion. And since this functionality is very limited and simple
it is possible to create a formal API with different implemen-
tations for different main loops.
Such API was created for CX-server circa 2005. It it

is called CXscheduler [10] in a “native” console form and
implements the event-driven main loop based on select()
syscall. API implementations (adapters) for Xt/Motif and
Qt exist, libev and LabWindows implementations are under
development.

Since all levels and components of CX employ CXsched-
uler all of them can be used in either console or GUI appli-
cations in a uniform way.

Modularity

Since the early days of CX device drivers aren’t statically
linked into CX server binary but are loaded at run-time, via
dlopen().

This approach was extended in v4: data-access modules,
frontends, screen instruments in GUI programs are imple-
mented as plugins. Even various configuration-file readers
(such as hardware configuration for server, screen descrip-
tion for screen manager) are plugins; this allows us to use
external macro-processors (currently m4) or some database
instead of files.
Plugins can be either dynamically loaded or linked in

statically (for platforms without dlopen()); care is taken
of this by a dedicated “cxldr” component.

PERFORMANCE

Additional functionality was expected to come at some
performance cost.

• Plug-ins management and data routing between plug-
ins and core libraries obviously require some CPU time,
which was hard to estimate in advance.

• Initial versions of CX had a limitation for scalar data
at device drivers’ level to be 32-bit integers only, since
this fits most control hardware and significantly sim-
plifies programming. CXv4 removes this limitation,
supporting data of various formats (int, float, text) and
of different sizes; conversion is performed automati-
cally, if required. This was also expected to cost some
performance loss.

• Performance can be especially critical for the most
resource-starved pieces of control system computer
hardware — CAMAC and CAN intelligent con-
trollers [11] running Linux on 50MHz PowerPC CPU.

However, simple benchmarking shows that neither addi-
tional modularity nor more flexible data model cause any
performance degradation. And software in intelligent con-
trollers even got several percent performance gain due to
optimizations in remote-driver-environment library.

CXv4 DEPLOYMENT
This part of work has been supported by Russian Science

Foundation (project N 14-50-00080).

VEPP-5
Drivers for a whole range of hardware used at VEPP-5

were ported fromCXv2 to CXv4 during 2014–2015. Control
system had switched from v2 to v4 during summer’2015
maintenance stop.
Besides regular data-access plugins, a special “formula

scripting” CDA plugin is used. It allows us to perform simple
calculations like “return value of channel1 + channel2 ∗
channel3” (for read channels), as well as simple sequences
like “put user-input values to channel1 and channel2; pause
for 2s; put 1 to channel3” (for write channels). Availability
of this simple scripting in a screen-manager application gives
freedom of where to place such macro-actions either at a
server level or at a client side, and allows us to easily debug
it first in the former case.

VEPP-2000 Interaction
VCAS support has been implemented and tested. Further

works on interoperation between VEPP-5 and VEPP-2000
control systems will continue when VEPP-2000 resumes
operation in 2016.

Electron Beam Welding Facility
BINP electron beam welding facility is of small scale. It

employs a small (10 devices, depending on experiment), but
diverse set of control hardware (including CAMAC, CANbus
and RS485). Thus, 3-layer control system was used from
the very beginning.

However, a full 3-layer software stack is a bit excessive for
a small facility. Modular nature of CXv4 enabled to unite
GUI and server parts into a single application, as shown on
Fig. 4c (and there are several variants depending on experi-
ment being carried out). As this application includes a CX
network data-access frontend, benefits of a 3-layer control
system are retained.

LIA-2
LIA-2 still runs CXv2 but all required device drivers are

ready, and high-level software is under development; switch
to CXv4 is scheduled to 2016.

FUTURE AND PROSPECTIVE WORKS
As the key point of CXv4 is its flexibility and ability

to interact with other control systems, the main direction
of development is expanding the repertoire of data-access
plugins and frontends.

EPICS Integration
The nearest target is interaction with EPICS. At present

time, client-side access to EPICS is implemented at Python
client library; it will be moved to a CDA plugin. EPICS/CA

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF093

Software Technology Evolution

ISBN 978-3-95450-148-9

917 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

frontend for CX-server is also planned, its implementation
will enable both-sided communication with VEPP-4 control
system.

NI Integration
BINP uses NI software (LabWindows) and hardware

(such as CompactRIO). When interoperation between NI
products and CX was required, it was usually implemented
via some simple custom protocols.

However, with CXv4 modular structure it seems possible
to use CDA in LabWindows and to mate a slightly modified
version of CX-server with CompactRIO internals (as shown
on Fig. 4d). These projects are currently under development.

CONCLUSION
CX version 4 employs a modular approach with client-

server communication separated from both client and server
cores and implemented in a plugin fashion.

This model proved to be flexible enabling direct commu-
nication with other control system frameworks. Additional
flexibility makes CXv4 more suitable for control systems of
various scales from small test stands to large facilities.

REFERENCES
[1] A.A.Starostenko et al., “Status of Injection Complex VEPP-5:

machine commissioning and first experience of positron
storage”, IPAC2014, Dresden, Germany, MOPME073
https://inspirehep.net/record/1314333/files/
mopme073.pdf

[2] D.A.Starostenko et al., “Results of operating LIA-2 in radio-
graph mode”, Physics of Particles and Nuclei Letters, Septem-
ber 2014, Volume 11, Issue 5, pp 660-664.

[3] D.Bolkhovityanov et al., “Design and Development of a Con-
trol System for Intense Source of Radioactive Ions prototype”,
ICALEPCS’2005, 10-14 November, 2005, Geneva, Switzer-
land, P1-091.

[4] Yu.I.Semenov et al., “60 KEV 30 KW electron beam facility
for electron beam technology”, EPAC’08, June 23-27, 2008,
Genoa, Italy, TUPP161.

[5] V.E.Blinov, et al., “The status of VEPP-4”, Physics of Parti-
cles and Nuclei Letters, 2014, Vol.11, No.5, pp. 620-631.

[6] “VEPP-2000 Project”, http://vepp2k.inp.nsk.su/

[7] A.Bogomyagkov, et al., “Automation of operations on the
VEPP-4 Control System”, ICALEPCS-05, 10-14 November,
2005, Geneva, Switzerland.

[8] A.Senchenko et al., “VEPP-2000 Collider Control System”,
PCaPAC-2012, Kolkata, India, FRCB04 (2012) http://
epaper.kek.jp/pcapac2012/papers/frcb04.pdf

[9] D.Yu.Bolkhovityanov et al, “Present Status of VEPP-5 Con-
trol System”, ICALEPCS2007, October 2007, Oak Ridge,
USA, TPPB18.

[10] “CXscheduler: a simple scheduler for event-driven console
applications” http://cxscheduler.sourceforge.net/

[11] D.Yu.Bolkhovityanov et al, “PowerPC-based CAMAC and
CAN-bus Controllers in VEPP-5 Control System”, PCa-
PAC2005, 22-25 March, 2005, Hayama, Japan, WEB4 http:
//conference.kek.jp/PCaPAC2005/paper/WEB4.pdf

WEPGF093 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

918C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

