
FPGA FIRMWARE FRAMEWORK FOR MTCA.4 AMC MODULES*

Lukasz Butkowski, Tomasz Kozak, Bin Yang, DESY, Hamburg, Germany
Paweł Prędki, DMCS, Lodz University of Technology, Lodz, Poland

Radoslaw Rybaniec, ISE, Warsaw University of Technology, Warsaw, Poland

Abstract
Many of the modules in specific hardware architectures

use the same or similar communication interfaces and IO
connectors. MicroTCA (MTCA.4) is one example of
such a case. All boards: communicate with the central
processing unit (CPU) over PCI Express (PCIe), send data
to each other using Multi-Gigabit Transceivers (MGT),
use the same backplane resources and have the same
Zone3 IO or FPGA mezzanine card (FMC) connectors.
All those interfaces are connected and implemented in
Field Programmable Gate Array (FPGA) chips. It makes
possible to separate the interface logic from the
application logic. This structure allows to reuse already
done firmware for one application and to create new
application on the same module. Also, already developed
code can be reused in new boards as a library. Proper
structure allows the code to be reused and makes it easy
to create new firmware.

This paper will present structures of firmware
framework and scripting ideas to speed up firmware
development for MTCA.4 architecture. European XFEL
control systems firmware, which uses the described
framework, will be presented as example.

INTRODUCTION
The MTCA.4 standard is derived from the Advanced

Telecommunication Computing Architecture. It is
enhanced for Rear I/O and Precision Timing and offers a
compact environment for transmission and parallel
processing of large amounts of data. The mechanics and
connectivity is defined by the standard PICMG MTCA.4
specification [1,2]. Main modules are called Advanced
Mezzanine Carriers (AMC). Each of them can be paired
with the Rear Transition Modules (RTM); front-to-rear
communication and signal transfer is handled over the so-
called Zone 3 region. The basic architecture follows the
idea of a centralized powerful processing unit that is
connected to various AMC I/O boards over several PCIe
lanes, dedicated trigger lines, clock lines and platform
related management lines. The AMC backplane offers
also 4 ports for low-latency-links connections (eight
differential pairs, full-duplex) that can reach up to 10
Gbit/s allowing the boards to communicate using serial
transmission (e.g. utilizing the MGTs).

The main function of the AMC modules is to provide
communication interfaces and perform digital signal
processing. All I/O lines are connected to the FPGA chip
on AMC board, shown in Figure 1. Depending on the

application and the used AMC, different RTM, FMC or
front I/O modules can be connected. Thanks to flexibility
of the FPGAs, many different applications can be run on
one AMC, still using the same hardware resources If the
support of hardware is already provided in the code, it can
be reused in many applications. The MTCA.4 firmware
framework introduces an additional abstraction layer that
separates the hardware dependent logic from user
application logic. The framework specifies universal
interfaces on this layer. This allows the same firmware
and software components to be reused, irrespective of the
type of the used hardware. It means that one application
logic can be run on different AMC modules.

Figure 1: MTCA.4 front and rear modules

For the European XFEL all AMC boards will have one
common feature: Xilinx FPGA chips, which perform,
among other tasks, communication with the CPU as well
as data acquisition and data processing required in control
systems. All firmware algorithms are written using
hardware description language (VHDL) code.

In the following sections of this paper the structure of a
typical VHDL project used at European XFEL MTCA.4
[3] systems is presented.

GENERAL STRUCTURE
The code for the FPGA firmware was divided into tree

main parts: board, board payload and user application.

The board section is hardware dependent and is specific
for a given board. One AMC has one board support
package (BSP). It has all components for configuration of
peripherals on the board, such as clocks, I/O buffers,
Analog to Digital Converters (ADCs), Digital to Analog
Converters (DACs), etc. It is responsible for
implementing communication interfaces with other
boards and with the CPU. It also includes Direct Memory
Access (DMA) and Data acquisition (DAQ) on DDR
memory chips. The board part of the firmware provides
interfaces for all resources on board.

Board payload is a middle layer section, connecting the
board interfaces with the application. It contains all the

__

*Work supported by DESY MSK group.
#lukasz.butkowski@desy.de

backplane

Zone3

Zone3
FPGA

AMC (front)RTM (rear)

F
M

C

FMC I/O

RTM I/O

fr
on

t
I/

O

analog

slow control
logic

WEPGF074 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

876C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology

possible interfaces that the selected hardware can provide,
allowing the user to choose which of them will be used in
the application. However, some applications may require
interfaces which are not provided by a specific board. In
such cases, the application algorithm needs to be adapted
to the hardware or interface adapters need to be
implemented.

The Application section contains user specific
algorithms. This part does not interact with hardware
directly and is not strongly dependent on it, although it
might use interfaces which are available in hardware
(board part).

Figure 2: VHDL code block structure

Board and payload parts are connected in one top entity
with all available interfaces that board can provide. One
layer deeper, the application interfaces with the payload
part, selecting the needed resources. Block diagram of top
VHDL structure is presented in Figure 2.

INTERFACES
Between board and application we can distinguish two

types of interfaces: universal and board specific.
Definitions of universal interfaces are common for all
boards. The include:

• IBUS – internal memory access bus, used to access
registers and memory areas in FPGA from CPU,
always connected to communication interface;

• DAQ – data acquisition bus, allows to write stream
of data to external memory. This data is accessed
using Direct Memory Access (DMA) over
communication interface;

• LLL – low latency links bus, middle layer of point to
point communication between boards using MGT;

• FMC – FPGA Mezzanine Card I/O;

• RTM – Rear Transition Modules I/O;

• AMCIO – backplane differential signals for clocks
and triggers;

• CLK – clock resources.

All standard interface signals are grouped in records,
which share the same name for all of the boards. This
makes it easy to connect the same components in different
applications. It is allowed to have more then one interface

of the same type in one board. There can be a few
independent DAQ channels or several point to point
(LLL) connections available. In this case records are
grouped in arrays.

Board specific interfaces include front I/O, ADC and
DAC chips as well as any other board logic that should be
controlled or accessed by application algorithms.

Communication with hardware and data acquisition is
one of the most important and common task for all
devices used for control systems. This is why the IBUS
interface is mandatory on every application in MTCA.4
firmware framework.

Communication Interface
The data transfer between the AMCs and the CPU in an

MTCA.4 crate is done using the PCI Express interface.
Each board support package includes the same
implementation of PCI Express transaction layer interface
adjusted to the specific type of FPGA chip. It allows to
access memory and memory-mapped register space on
AMC board from CPU using the same abstraction layer.
PCIe interconnect provides two independent IBUS
interfaces. The first one connects PCIe Base Address 0
(BAR0) with board part registers address space while the
second one connects PCIe BAR1 with application
registers address space.

Address Space
Each VHDL module in firmware has an independent

register address space definition: board logic registers,
application registers and RTM, FMC, algorithms modules
registers in applications. Access to those registers is done
using the IBUS port on each module.

Figure 3: Block diagram of address space and interfaces
connection of standard MTCA.4 firmware

adapter

IO

ENT_TOP - top entity

ENT_PAYLOAD_BOARD_NAME

A
pp

lic
at

io
n

in
te

rf
ac

e

B
oa

rd
 in

te
rf

ac
e

PKG_APPLICATION
Application configuration

PKG_BOARD
Board

configuration

ENT_BOARD_TOP ENT_APPLICATION_TOP

universal interfaces

board specyfic

interfaces logic:

PCI express

LLL

SPI
I2C

DDR

ADC
DAC

etc.

User logic

FMC
module

RTM
module

application FMC module

RTM module algorithms

Application
Interconnect

address space

address space

address space

address space

submodule
address space

submodule
address space

interconnect

modules
addresses

IB
U

S

IB
U

S

APPLICATION

PCI Express

IB
U

S

PCIE interconnect

board

address space

IB
U

S

Board Interconnect

IB
U

S

IBUS

A
X

I

DMA

DAQ
module

memory

LLL
protocol

M
G

T

MGT
handler

BOARD

BAR1 BAR0

board application interface

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF074

Hardware Technology

ISBN 978-3-95450-148-9

877 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 4: MTCA.4 firmware framework folder structure

This port can be directly connected to the IBUS interface
from PCIe. Using interconnect many independent
modules can be connected to the same bus. Information
about offset of module address is defined in the board or
application address space.

Main interfaces connection with modules and address
space distribution is presented in Figure 3.

FOLDER STRUCTURE
Firmware files are grouped in folders based on code

structure and functionality. The first level divides files
into the following groups: boards, applications, modules,
libraries, projects and tools. Each board support package
has its own location inside the boards folder. The same
rule applies to application and modules. Modules are
additionally grouped by type of module. Structure of
firmware framework is presented in Figure 4.

At the deepest level, the files are grouped by type into
the following categories:

• hdl: all source code files written in VHDL or
Verliog;

• tcl: scripts dedicated for source files under hdl;
• ip: Intellectual Property (IP) cores definition files;
• ucf: constraints files.

Projects folder contains the generated projects that
connects all the other components together. Libraries as
well as modules are shared over all projects. The tools
folder contains all the general framework scripts.

AUTOMATION
The connection of board, application and modules with

their configuration packages under one top entity is
considered project. Project generation follows the idea
that components are independent and have separate
source code files list. The creation of projects is
automated and done using scripts.

For firmware framework automation Tcl scripting
language was chosen [4]. It is an easy, powerful and well-
documented scripting language available on the majority
of software platforms. It is also natively supported by
Xilinx toolschain.

Tcl Scripting
Every module has its own Tcl script containing a list of

source files comprising this module. This file is executed
during project creation. Based on project and
configuration packages variables different files can be
added or additional steps can be executed, e.g. adding an
automatically generated version file. Xilinx installation
comes with a customized Tcl distribution called xtclsh. It
has dedicated commands for Xilinx design flow [5].

Depending on their function, the main Tcl files included
in the framework are:

• main.tcl – main Tcl script shared for all projects,
main work of automation is done here, located in the
tools folder;

• project.tcl – defines project constants, information
about board application and its configuration
packages, placed under #scripts folder of project
location;

• board.tcl – defines hardware platform such as FPGA
chip type and project properties, adds all board
support package files to projects;

• application.tcl, module.tcl, lib.tcl – defines the user
logic, modules and libraries source files to be added
to the project.

Project Generation
Based on the project information and the source files

lists, the project file is generated automatically. In case of
the Xilinx ISE tools, a .xise file is generated. Only one
command has to be executed from #scripts folder to
perform the project generation process.

The diagram of the automatic project generation using
Tcl scripts is shown in Figure 5.

WEPGF074 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

878C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology

Figure 5: Project generation diagram

All the tasks are handled by the main.tcl script, which
is run using Xilinx Tcl shell with the following
parameters:

$xtclsh main.tcl create_project xise [ProjectName]

The script includes the projects.tcl file located in the
folder given by the project name and loads the defined
project variables. Those include the board and
application name and their configuration packages. The
packages are parsed and all the constants that are used in
VHDL are accessible in the Tcl script. Base on this
information, the board.tcl and application.tcl scripts are
executed with access to all the variables values. Xilinx-
specific Tcl commands are then used to generate the
Xilinx ISE project file.

USE CASES
Presented MTCA.4 firmware framework is used for

control systems at FLASH [6] and European XFEL
accelerators at DESY in Hamburg. Mainly it is used at
Low Level Radio Frequency (LLRF) control systems and
for optical synchronization applications [7]. They are
implemented using the MTCA.4 architecture. The frame-
work was used throughout the entire process of
development of the LLRF system. It helped and speed-up
the hardware testing and implementation and evaluation
of firmware.

One Board Many Applications
One of the most common cases is running a few

different applications on the same board. A good example
is the SIS8300L digitizer board from Struck [8]. Table 1
summarizes the main applications, in which this board is
used at DESY.

The BSP code was successfully shared between the
projects including different applications. Added features
and bug fixed in the board part or in libraries of the
VHDL code were immediately included in the all the
projects, reducing the development time.

Table 1: Different Applications on the Same Board

Application RTM AMC

LLRF controller field
detection part

DWC10

SIS8300LSingle cavity LLRF
controller

DWC8VM1

Toroid detection application

SIS8900

One Application on Many Boards
Sometimes, an application needs to be run on different

hardware than it was initially developed for. This is
usually due to lack of available hardware or changes in
the hardware version. This happens quite often in the
hardware development process, where the prototype can
differ significantly from the final version. This was the
case for the main LLRF controller board. There are three
versions of board with different FPGA chips and different
I/O connections and all of them run the same application,
as shown in table 2.

Table 2: One Application on Different Board Version

Application RTM AMC

Main controller application
for LLRF distributed
system.

DRTM-VM
v1.2

uTC v.1.0

uTC v.1.3

DRTM-VM2 TCK7

CONCLUSION
The MTCA.4 firmware framework was developed and

used at DESY. Proper structure and interfaces were
defined as well as automation scripts were written.
Firmware developed using this framework was
successfully deployed for XFEL and FLASH accelerators.
The framework by its modularity brings significant
improvement in terms the development time.

project.tcl

PKG_APPLICATION.vhdPKG_BOARD.vhd

board.tcl application.tcl

module1.tcl module2.tcl

 *.xise

configuration
constants

parts configuration

project
information

main.tcl
Output

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF074

Hardware Technology

ISBN 978-3-95450-148-9

879 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

REFERENCES
[1] http://www.picmg.org
[2] http://mtca.desy.de
[3] J. Branlard et al., “MTCA.4 LLRF system for the

European XFEL” MIXDES, 2013 Proceedings of the
20th International Conference, pp. 109–112, June
2013.

[4] https://www.tcl.tk/ “Tcl documentation site [Online]”
[5] http://www.xilinx.com/products/design-tools/ise-

design-suite.html ,“Xilinx ISE [Online].”
[6] J. Branlard et al., “Equipping FLASH with a

MTCA.4-based LLRF system” SRF2013, Paris,
France, pp. 1120-1122, (2013).

[7] U.Mavricˇ et al.“Precision synchronization of optical
lasers based on MTCA.4 electronics”, IBIC2013,
Oxford, UK, pp. 451-453, (2013).

[8] http://www.struck.de/ “Struck site [Online].”

WEPGF074 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

880C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technology

