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Abstract
Many of the modules in specific hardware architectures

use the same or similar communication interfaces and IO
connectors.  MicroTCA  (MTCA.4)  is  one  example  of
such  a  case.  All  boards:  communicate  with  the  central
processing unit (CPU) over PCI Express (PCIe), send data
to  each  other  using Multi-Gigabit  Transceivers  (MGT),
use  the  same  backplane  resources  and  have  the  same
Zone3 IO or  FPGA mezzanine card  (FMC) connectors.
All  those  interfaces  are  connected  and  implemented  in
Field Programmable Gate Array (FPGA) chips. It makes
possible  to  separate  the  interface  logic  from  the
application logic.  This structure allows to reuse already
done  firmware  for  one  application  and  to  create  new
application on the same module. Also, already developed
code  can  be  reused  in  new boards  as  a  library.  Proper
structure allows the code to be reused and makes it easy
to create new firmware.

This  paper  will  present  structures  of  firmware
framework  and  scripting  ideas  to  speed  up  firmware
development  for MTCA.4 architecture.  European  XFEL
control  systems  firmware,  which  uses  the  described
framework, will be presented as example.

INTRODUCTION
The MTCA.4 standard is derived from the Advanced

Telecommunication  Computing  Architecture.  It  is
enhanced for Rear I/O and Precision Timing and offers a
compact  environment  for  transmission  and  parallel
processing of large amounts of data. The mechanics and
connectivity is defined by the standard PICMG MTCA.4
specification  [1,2].  Main  modules  are  called  Advanced
Mezzanine Carriers (AMC). Each of them can be paired
with  the  Rear  Transition  Modules  (RTM);  front-to-rear
communication and signal transfer is handled over the so-
called Zone 3 region. The basic architecture follows the
idea  of  a  centralized  powerful  processing  unit  that  is
connected to various AMC I/O boards over several PCIe
lanes,  dedicated  trigger  lines,  clock  lines  and  platform
related  management  lines.  The  AMC  backplane  offers
also  4  ports  for  low-latency-links  connections  (eight
differential  pairs,  full-duplex)  that  can  reach  up  to  10
Gbit/s  allowing the boards to communicate using serial
transmission (e.g. utilizing the MGTs).

The main function of the AMC modules is to provide
communication  interfaces  and  perform  digital  signal
processing. All I/O lines are connected to the FPGA chip
on AMC board,  shown in  Figure  1.  Depending  on  the

application and the used AMC, different RTM, FMC or
front I/O modules can be connected.  Thanks to flexibility
of the FPGAs, many different applications can be run on
one AMC, still using the same hardware resources  If the
support of hardware is already provided in the code, it can
be reused in many applications. The MTCA.4 firmware
framework introduces an additional abstraction layer that
separates  the  hardware  dependent  logic  from  user
application  logic.  The  framework  specifies  universal
interfaces  on this layer.  This  allows the same firmware
and software components to be reused, irrespective of the
type of the used hardware. It  means that one application
logic can be run on different AMC modules. 

Figure 1: MTCA.4 front and rear modules

For the European XFEL all AMC boards will have one
common  feature:  Xilinx  FPGA chips,  which  perform,
among other tasks, communication with the CPU as well
as data acquisition and data processing required in control
systems.  All  firmware  algorithms  are  written  using
hardware description language (VHDL) code. 

In the following sections of this paper the structure of a
typical VHDL project used at European XFEL MTCA.4
[3] systems is presented. 

GENERAL STRUCTURE
The code for the FPGA firmware was divided into tree

main parts: board, board payload and user application. 

The board section is hardware dependent and is specific
for  a  given  board.  One  AMC  has  one  board  support
package (BSP). It has all components for configuration of
peripherals  on  the  board,  such  as  clocks,  I/O  buffers,
Analog to Digital Converters (ADCs), Digital to Analog
Converters  (DACs),  etc.  It  is  responsible  for
implementing  communication  interfaces  with  other
boards and with the CPU. It also includes Direct Memory
Access  (DMA)  and  Data  acquisition  (DAQ)  on  DDR
memory chips. The board part of the firmware provides
interfaces for all resources on board. 

Board payload is a middle layer section, connecting the
board interfaces  with the application. It  contains all the
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possible interfaces that the selected hardware can provide,
allowing the user to choose which of them will be used in
the application. However, some applications may require
interfaces which are not provided by a specific board. In
such cases, the application algorithm needs to be adapted
to  the  hardware  or  interface  adapters  need  to  be
implemented.

The  Application  section  contains  user  specific
algorithms.  This  part  does  not  interact  with  hardware
directly and is not strongly dependent on it,  although it
might  use  interfaces  which  are  available  in  hardware
(board part).

Figure 2: VHDL code block structure

Board and payload parts are connected in one top entity
with all available interfaces that board can provide. One
layer deeper,  the application interfaces with the payload
part, selecting the needed resources. Block diagram of top
VHDL structure is presented in Figure 2.

INTERFACES
Between board and application we can distinguish two

types  of  interfaces:  universal  and  board  specific.
Definitions  of  universal  interfaces  are  common  for  all
boards. The include:

• IBUS – internal memory access bus, used to access
registers  and  memory  areas  in  FPGA from  CPU,
always connected to communication interface;

• DAQ – data acquisition bus, allows to write stream
of  data  to  external  memory.  This  data  is  accessed
using  Direct  Memory  Access  (DMA)  over
communication interface;

• LLL – low latency links bus, middle layer of point to
point communication between boards using MGT;

• FMC – FPGA Mezzanine Card I/O;

• RTM – Rear Transition Modules I/O; 

• AMCIO – backplane differential  signals for clocks
and triggers; 

• CLK – clock resources. 

All  standard interface signals  are grouped in records,
which share  the same name for  all  of  the boards.  This
makes it easy to connect the same components in different
applications. It is allowed to have more then one interface

of  the  same  type  in  one  board.  There  can  be  a  few
independent  DAQ  channels  or  several  point  to  point
(LLL)  connections  available.  In  this  case  records  are
grouped in arrays.

Board  specific  interfaces  include front I/O,  ADC and
DAC chips as well as any other board logic that should be
controlled or accessed by application algorithms.

Communication with hardware and data acquisition is
one  of  the  most  important  and  common  task  for  all
devices used for control systems. This is why the IBUS
interface is mandatory on every application in MTCA.4
firmware framework.

Communication Interface
The data transfer between the AMCs and the CPU in an

MTCA.4 crate is done using the PCI Express interface.
Each  board  support  package  includes  the  same
implementation of PCI Express transaction layer interface
adjusted to the specific type of FPGA chip. It  allows to
access  memory  and  memory-mapped  register  space  on
AMC board from CPU using the same abstraction layer.
PCIe  interconnect  provides  two  independent  IBUS
interfaces.  The first  one connects  PCIe Base Address  0
(BAR0) with board part registers address space while the
second  one  connects  PCIe  BAR1  with  application
registers address space. 

Address Space
Each VHDL module in firmware  has  an independent

register  address  space  definition:  board  logic  registers,
application registers and RTM, FMC, algorithms modules
registers in applications. Access to those registers is done
using the IBUS port on each module.

Figure 3: Block diagram of address space and interfaces
connection of standard MTCA.4 firmware
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Figure 4: MTCA.4 firmware framework folder structure

This port can be directly connected to the IBUS interface
from  PCIe.  Using  interconnect  many  independent
modules can be connected to the same bus. Information
about offset of module address is defined in the board or
application address space.

Main interfaces  connection with modules and address
space distribution is presented in Figure 3. 

FOLDER STRUCTURE
Firmware  files  are  grouped  in folders  based  on code

structure  and  functionality.  The  first  level  divides  files
into the following groups: boards, applications, modules,
libraries, projects and tools. Each board support package
has its own location inside the  boards  folder. The same
rule  applies  to application  and modules.  Modules  are
additionally  grouped  by  type  of  module.  Structure  of
firmware framework is presented in Figure 4.

At the deepest level, the files are grouped by type into
the following categories:

• hdl:  all  source  code  files  written  in  VHDL  or
Verliog;

• tcl: scripts dedicated for source files under hdl;
• ip: Intellectual Property (IP) cores definition files;
• ucf: constraints files.

Projects folder  contains  the  generated  projects  that
connects all the other components together.  Libraries as
well  as  modules are shared  over all  projects.  The tools
folder contains all the general framework scripts.

AUTOMATION
The connection of board, application and modules with

their  configuration  packages  under  one  top  entity  is
considered  project.  Project  generation  follows  the  idea
that  components  are  independent  and  have  separate
source  code  files  list.  The  creation  of  projects  is
automated and done using scripts. 

For  firmware  framework  automation  Tcl  scripting
language was chosen [4]. It is an easy, powerful and well-
documented scripting language available on the majority
of  software  platforms.  It  is  also  natively  supported  by
Xilinx toolschain.

Tcl Scripting
Every module has its own Tcl script containing a list of

source files comprising this module. This file is executed
during  project  creation.  Based  on  project  and
configuration  packages  variables  different  files  can  be
added or additional steps can be executed, e.g. adding an
automatically  generated  version  file.  Xilinx  installation
comes with a customized Tcl distribution called xtclsh. It
has dedicated commands for Xilinx design flow [5].

Depending on their function, the main Tcl files included
in the framework are:

• main.tcl  –  main  Tcl  script  shared  for  all  projects,
main work of automation is done here, located in the
tools folder;

• project.tcl  –  defines  project  constants,  information
about  board  application  and  its  configuration
packages,  placed  under  #scripts  folder  of  project
location;

• board.tcl – defines hardware platform such as FPGA
chip  type  and  project  properties,  adds  all  board
support package files to projects;

• application.tcl, module.tcl, lib.tcl – defines the user
logic, modules and libraries source files to be added
to the project.

Project Generation
Based on the project  information and the source files

lists, the project file is generated automatically. In case of
the Xilinx ISE tools, a .xise file is generated. Only one
command  has  to  be  executed  from  #scripts folder  to
perform the project generation process.

The diagram of the automatic project generation using
Tcl scripts is shown in Figure 5.
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Figure 5: Project generation diagram

All the tasks are handled by the main.tcl script, which
is  run  using  Xilinx  Tcl  shell  with  the  following
parameters: 

$xtclsh main.tcl create_project xise [ProjectName]

The script  includes the projects.tcl  file located in the
folder  given by the project  name and loads the defined
project  variables.   Those  include  the  board  and
application name and their  configuration packages.  The
packages are parsed and all the constants that are used in
VHDL  are  accessible  in  the  Tcl  script.  Base  on  this
information,  the  board.tcl  and  application.tcl  scripts  are
executed with access to all the variables values. Xilinx-
specific  Tcl  commands  are  then  used  to  generate  the
Xilinx ISE project file.

USE CASES
Presented  MTCA.4  firmware  framework  is  used  for

control  systems  at  FLASH  [6]  and  European  XFEL
accelerators  at  DESY in Hamburg.  Mainly it  is used at
Low Level Radio Frequency (LLRF) control systems and
for  optical  synchronization  applications  [7].  They  are
implemented using the MTCA.4 architecture. The frame-
work  was  used  throughout  the  entire  process  of
development of the LLRF system. It helped and speed-up
the hardware testing and implementation and evaluation
of firmware.

One Board Many Applications
One  of  the  most  common  cases  is  running  a  few

different applications on the same board. A good example
is the SIS8300L digitizer board from Struck [8]. Table 1
summarizes the main applications, in which this board is
used at DESY.

The  BSP code  was  successfully  shared  between  the
projects  including different  applications.  Added features
and  bug  fixed  in  the  board  part  or  in  libraries  of  the
VHDL code  were  immediately  included  in  the  all  the
projects, reducing the development time.

Table 1: Different Applications on the Same Board

Application RTM AMC

LLRF controller field 
detection part

DWC10

SIS8300LSingle cavity LLRF 
controller

DWC8VM1

Toroid detection application

SIS8900

One Application on Many Boards
Sometimes, an application needs to be run on different

hardware  than  it  was  initially  developed  for.  This  is
usually due to lack of available hardware or changes in
the  hardware  version.  This  happens  quite  often  in  the
hardware development process, where the prototype can
differ  significantly from the final  version. This was the
case for the main LLRF controller board. There are three
versions of board with different FPGA chips and different
I/O connections and all of them run the same application,
as shown in table 2.

Table 2: One Application on Different Board Version

Application RTM AMC

Main controller application 
for LLRF distributed 
system.

DRTM-VM
v1.2

uTC v.1.0

uTC v.1.3

DRTM-VM2 TCK7

CONCLUSION
The MTCA.4 firmware framework was developed and

used  at  DESY.  Proper  structure  and  interfaces  were
defined  as  well  as  automation  scripts  were  written.
Firmware  developed  using  this  framework  was
successfully deployed for XFEL and FLASH accelerators.
The  framework  by  its  modularity  brings  significant
improvement in terms the development time.

project.tcl

PKG_APPLICATION.vhdPKG_BOARD.vhd

board.tcl application.tcl

module1.tcl module2.tcl
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main.tcl
Output
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